外科理论与实践 ›› 2023, Vol. 28 ›› Issue (01): 58-66.doi: 10.16139/j.1007-9610.2023.01.10
收稿日期:
2022-06-13
出版日期:
2023-01-25
发布日期:
2023-03-25
通讯作者:
戴向晨
E-mail:13302165917@163.com
基金资助:
BI Jiaxue1, ZHU Henghao1, WANG Duan1, LIU Haofei2, DAI Xiangchen1()
Received:
2022-06-13
Online:
2023-01-25
Published:
2023-03-25
Contact:
DAI Xiangchen
E-mail:13302165917@163.com
摘要:
目的:评估外分支支架和内分支支架胸主动脉腔内修复术(thoracic endovascular aortic repair, TEVAR)治疗Stanford B型主动脉夹层(Stanford type B aortic dissection, TBAD)的近期结果,并通过计算流体力学(computational fluid dynamics, CFD)分析两种支架对主动脉夹层血流状态的影响。方法:收集2018年5月至2021年12月天津医科大学总医院血管外科采用外分支支架和内分支支架治疗TBAD病人的临床资料,回顾性分析两组近期治疗结果。基于两组的CT血管造影,各选取1例典型病例构建个性化的三维模型,进行流体力学数值模拟计算。对比分析手术前、后流场速度分布、壁面压力和壁面切应力(wall shear stress, WSS)参数。结果: 共纳入55例TBAD病人,其中外分支支架组49例,内分支支架组6例。两组基线资料差异无统计学意义。两组手术成功率均100%。外分支支架组41例(83.7%)和内分支支架组6例(100%)单纯重建左锁骨下动脉(left subclavical artery, LSA)。外分支支架组5例重建左颈总动脉(left common carotid artery, LCCA)联合颈锁动脉搭桥,2例重建LCCA联合LSA栓塞,1例重建LCCA联合LSA开窗。外分支支架组失访4例。两组围术期及随访期主动脉相关死亡率(P=1.000)、分支支架通畅率(P=1.000)及免于靶血管二次干预率(P=0.298)差异均无统计学意义。两组支架植入术后均显著改善夹层病变内流场紊乱,恢复正常主动脉血流形态,降低局部异常增高的WSS。内分支支架对主动脉弓部及分支血流状态的干扰较外分支明显。结论:外分支支架和内分支支架TEVAR重建LSA,治疗TBAD均有较好近期效果。外分支支架相比内分支支架解剖契合度较高,可较大程度恢复主动脉弓部正常血流状态。
中图分类号:
秘家学, 朱恒豪, 王端, 刘浩飞, 戴向晨. 外分支支架和内分支支架治疗B型主动脉夹层的近期结果及计算流体力学分析[J]. 外科理论与实践, 2023, 28(01): 58-66.
BI Jiaxue, ZHU Henghao, WANG Duan, LIU Haofei, DAI Xiangchen. Outer branched and inner branched endografts in treatment of Stanford type B aortic dissection: short-term results and computational fluid dynamics analysis[J]. Journal of Surgery Concepts & Practice, 2023, 28(01): 58-66.
表1
两组基线数据[n(%)$\bar{x}$±s]
Item | Outer branched endograft group (n=49) | Inner branched endograft group (n=6) | t value | P value |
---|---|---|---|---|
Male | 43(87.8) | 6(100.0) | 1.000a) | |
Age(Year) | 56.8±14.6 | 52.3±15.4 | 0.709 | 0.481 |
Lesion type | 1.000a) | |||
Aortic dissection | 36(73.5) | 6(100.0) | ||
Thoracic aortid aneursm | 6(12.2) | 0 | ||
Penetrating aortic ulcer | 6(12.2) | 0 | ||
Aortid intramural haematoma | 1(2.1) | 0 | ||
The diseases and situation combined | ||||
Hypertension | 44(89.8) | 6(100.0) | 1.000a) | |
Diabetes | 4(8.2) | 1(16.7) | 0.452a) | |
Hyperlipidemia | 2(4.1) | 0 | 1.000a) | |
Coronary heart disease | 8(16.3) | 0 | 0.577a) | |
Cardiovascular and cerebrovascular diseases | 4(8.2) | 0 | 1.000a | |
Abnormal renal function | 1(2.0) | 0 | 1.000a) |
[1] |
KUMAR S, CHOINSKI K N, TADROS R O. Thoracic aortic endografts: past, present, and future[J]. Surg Technol Int, 2020, 37:232-236.
pmid: 33180954 |
[2] |
RIAMBAU V, BÖCKLER D, BRUNKWALL J, et al. Editor′s choice-management of descending thoracic aorta diseases: clinical practice guidelines of the European Society for Vascular Surgery(ESVS)[J]. Eur J Vasc Endovasc Surg, 2017, 53(1):4-52.
doi: 10.1016/j.ejvs.2016.06.005 URL |
[3] | CANONGE J, JAYET J, HEIM F, et al. Comprehensive review of physician modified aortic stent grafts: technical and clinical outcomes[J]. Eur J Vasc Endovasc Surg, 2021, 1(4):560-569. |
[4] |
BÜNGER C M, KISCHE S, LIEBOLD A, et al. Hybrid aortic arch repair for complicated type B aortic dissection[J]. J Vasc Surg, 2013, 58(6):1490-1496.
doi: 10.1016/j.jvs.2013.05.091 pmid: 23880549 |
[5] |
WANG T, SHU C, LI M, et al. Thoracic endovascular aortic repair with single/double chimney technique for aortic arch pathologies[J]. J Endovasc Ther, 2017, 24(3):383-393.
doi: 10.1177/1526602817698702 pmid: 28387611 |
[6] | 沈毓, 陆清声. TEVAR保留左锁骨下动脉治疗主动脉夹层[J]. 外科理论与实践, 2017, 22(4):297-299. |
SHEN Y, LU Q S. Thoracic endovascular aortic repair with preservation of left subclavian artery for aortic dissection[J]. J Surg Concepts Pract, 2017, 22(4):297-299. | |
[7] |
KARMONIK C, BISMUTH J, DAVIES M G, et al. A computational fluid dynamics study pre- and post-stent graft placement in an acute type B aortic dissection[J]. Vasc Endovascular Surg, 2011, 45(2):157-164.
doi: 10.1177/1538574410389342 URL |
[8] | 李伟浩, 沈晨阳, 张小明, 等. 计算流体力学技术在胸主动脉疾病中的应用[J]. 中华外科杂志, 2015, 53(8):637-640. |
LI W H, SHEN C Y, ZHANG X M, et al. Role of computational fluid dynamics in thoracic aortic diseases research: technical superiority and application prospect[J]. Chin J Surg, 2015, 53(8):637-640. | |
[9] | 刘东婷, 刘家祎, 温兆赢, 等. 4D Flow MRI对主动脉夹层患者腹部血流模式的定量研究及评估[J]. 放射学实践, 2017, 32(4):388-394. |
LIU D T, LIU J Y, WEN Z Y, et al. Quantitative study on abdominal blood flow patterns in patients with aortic dissection using 4D flow MRI[J]. Radiol Pract, 2017, 32(4):388-394. | |
[10] |
XU H, XIONG J, HAN X, et al. Computed tomography-based hemodynamic index for aortic dissection[J]. J Thorac Cardiovasc Surg, 2021, 162(2):e165-e176.
doi: 10.1016/j.jtcvs.2020.02.034 pmid: 32217023 |
[11] |
MORBIDUCCI U, PONZINI R, GALLO D, et al. Inflow boundary conditions for image-based computational hemodynamics: impact of idealized versus measured veloci-ty profiles in the human aorta[J]. J Biomech, 2013, 46(1):102-109.
doi: 10.1016/j.jbiomech.2012.10.012 URL |
[12] |
JING Z, LU Q, FENG J, et al. Endovascular repair of aortic dissection involving the left subclavian artery by castor stent graft: a multicentre prospective trial[J]. Eur J Vasc Endovasc Surg, 2020, 60(6):854-861.
doi: 10.1016/j.ejvs.2020.08.022 URL |
[13] | 马晓丹, 李芬, 朱雅亭, 等. 模块化内嵌分支支架形态特征对支架内血流动力学的影响[J]. 医用生物力学, 2022, 37(1):124-130. |
MA X D, LI F, ZHU X T, et al. Influences of morpholo-gicai characteristics of modular inner branched stent graft on hemodynamic performance of stent[J]. J Med Biomech, 2022, 37(1):124-130. | |
[14] |
CHEN D, MÜLLER-ESCHNER M, KOTELIS D, et al. A longitudinal study of type-B aortic dissection and endovascular repair scenarios: computational analyses[J]. Med Eng Phys, 2013, 35(9):1321-1330.
doi: 10.1016/j.medengphy.2013.02.006 pmid: 23523079 |
[15] |
XU H, LI Z, DONG H, et al. Hemodynamic parameters that may predict false-lumen growth in type-B aortic dissection after endovascular repair: a preliminary study on long-term multiple follow-ups[J]. Med Eng Phys, 2017, 50:12-21.
doi: S1350-4533(17)30232-1 pmid: 28890304 |
[16] |
OSSWALD A, KARMONIK C, ANDERSON J R, et al. Elevated wall shear stress in aortic type B dissection may relate to retrograde aortic type A dissection: a computational fluid dynamics pilot study[J]. Eur J Vasc Endovasc Surg, 2017, 54(3):324-330.
doi: 10.1016/j.ejvs.2017.06.012 URL |
[17] |
MUNSHI B, PARKER L P, NORMAN P E, et al. The application of computational modeling for risk prediction in type B aortic dissection[J]. J Vasc Surg, 2020, 71(5):1789-1801.
doi: S0741-5214(19)32389-4 pmid: 31831314 |
[18] |
乔永辉, 罗坤, 樊建人, 等. 伴随原位开窗的胸主动脉腔内修复术后血液两相流动数值模拟[J]. 中国科学院大学学报, 2020, 37(2):192-197.
doi: 10.7523/j.issn.2095-6134.2020.02.007 |
QIAO Y H, LUO K, FAN J R, et al. Numerical simulation of two-phase blood flow after thoracic endovascular aortic repair with in situ fenestration[J]. J Univ Chin Acad Sci, 2020, 37(2):192-197. | |
[19] | 毛乐, 乔永辉, 栾靖旸, 等. 开窗技术数值模拟在主动脉弓部病变中的应用[J]. 中国临床医学, 2021, 28(3):375-380. |
MAO L, QIAO Y H, LUAN J Y, et al. Insights on hemodynamic variation after fenestrated thoracic endovascular aortic repair for aortic arch lesion[J]. Chin J Clin Med, 2021, 28(3):375-380. | |
[20] | GEORGAKARAKOS E, IOANNOU C, KOSTAS T, et al. Inflammatory response to aortic aneurysm intraluminal thrombus may cause increased 18F-FDG uptake at sites not associated with high wall stress: comment on “high levels of 18F-FDG uptake in aortic aneurysm wall are associated with high wall stress”[J]. Eur J Vasc Endovasc Surg, 2010, 39(6):795. |
[21] | 陈宇, 魏新, 张颖慈, 等. 基于计算流体力学的Stanford B型主动脉夹层血流动力学分析[J]. 医用生物力学, 2018, 33(6):490-495. |
CHEN Y, WEI X, ZHANG Y C, et al. Hemodynamic analysis of stanford type B aortic dissection based on computational fluid dynamics[J] J Med Biomech, 2018, 33(6):490-495. | |
[22] |
CHEN D, MÜLLER-ESCHNER M, VON TENGG-KOBLIGK H, et al. A patient-specific study of type-B aortic dissection: evaluation of true-false lumen blood exchange[J]. Biomed Eng Online, 2013, 12:65.
doi: 10.1186/1475-925X-12-65 pmid: 23829346 |
[23] |
SHANG E K, NATHAN D P, FAIRMAN R M, et al. Use of computational fluid dynamics studies in predicting aneurysmal degeneration of acute type B aortic dissections[J]. J Vasc Surg, 2015, 62(2):279-284.
doi: 10.1016/j.jvs.2015.02.048 pmid: 25935270 |
[1] | 王志伟, 何炎平, 李铭志, 仇明, 黄超, 刘亚东. 基于计算流体力学的90° 弯管气液两相流数值模拟及流型演化[J]. 上海交通大学学报, 2022, 56(9): 1159-1167. |
[2] | 高昌昊, 宋文萍, 韩少强, 路宽, 王跃, 叶坤. 空空导弹过失速重新定向技术研究[J]. 空天防御, 2022, 5(3): 17-26. |
[3] | 陈志鑫, 汪怡平, 杨亚锋, 苏建军, 杨斌. 不同送风方式下大客车内飞沫传播特性研究[J]. 上海交通大学学报, 2022, 56(11): 1532-1540. |
[4] | 原野, 周旻, 王恩慈, 李哲昀, 张宇翀, 林朋, 莫凡迪, 郭大乔, 符伟国, 王利新. 真腔覆膜支架点状植入联合假腔内栓塞技术治疗腔内修复术后主动脉夹层动脉瘤[J]. 外科理论与实践, 2022, 27(05): 458-462. |
[5] | 葛阳阳, 郭伟. 主动脉夹层301分型概念及临床意义[J]. 外科理论与实践, 2022, 27(04): 281-283. |
[6] | 周旻, 王利新, 符伟国. 主动脉夹层术后影像学随访进展及规范[J]. 外科理论与实践, 2022, 27(04): 284-287. |
[7] | 李震. 2022年STS和AATS B型主动脉夹层指南解读[J]. 外科理论与实践, 2022, 27(04): 288-293. |
[8] | 王伦常, 舒畅. 非A非B型主动脉夹层的腔内治疗[J]. 外科理论与实践, 2022, 27(04): 294-298. |
[9] | 陈梦泽, 李振江, 张鸿坤. 腔内治疗A型主动脉夹层的难点与突破[J]. 外科理论与实践, 2022, 27(04): 299-303. |
[10] | 常光其, 杨文超. 主动脉夹层合并灌注不良综合征[J]. 外科理论与实践, 2022, 27(04): 304-308. |
[11] | 王利新, 张宇翀, 符伟国. 主动脉夹层术后远端动脉瘤的处理[J]. 外科理论与实践, 2022, 27(04): 309-314. |
[12] | 李晓晔, 陆清声. 单分支支架腔内修复B型主动脉夹层[J]. 外科理论与实践, 2022, 27(04): 314-317. |
[13] | 王瑞华, 仇鹏, 刘俊超, 吴小雨, 秦金保, 叶开创, 李维敏, 刘晓兵, 殷敏毅, 黄新天, 陆信武. 激光原位开窗胸主动脉腔内重建治疗累及弓部分支的主动脉夹层:近期结果及并发症[J]. 外科理论与实践, 2022, 27(04): 324-329. |
[14] | 张宇, 王晓亮. 基于径向点插值方法的柔性螺旋桨气动弹性模拟[J]. 上海交通大学学报, 2020, 54(9): 924-934. |
[15] | 王瑞, 肖瑶, 顾汉洋, 叶亚楠. 螺旋管内单相流动周向非均匀传热现象的数值模拟[J]. 上海交通大学学报, 2020, 54(7): 688-696. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||