外科理论与实践 ›› 2025, Vol. 30 ›› Issue (01): 21-26.doi: 10.16139/j.1007-9610.2025.01.05

• 专家论坛 • 上一篇    下一篇

甲状腺滤泡性肿瘤超声诊断新进展

苏一轩, 应涛()   

  1. 上海交通大学医学院附属第六人民医院超声医学科 上海超声医学研究所,上海 200233
  • 收稿日期:2024-12-03 出版日期:2025-01-25 发布日期:2025-04-25
  • 通讯作者: 应涛,E-mail:yingtaomail@yeah.net

Recent advances in ultrasound diagnosis of thyroid follicular neoplasms

SU Yixuan, YING Tao()   

  1. Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, China
  • Received:2024-12-03 Online:2025-01-25 Published:2025-04-25

摘要:

常规超声影像对于甲状腺滤泡性肿瘤的良、恶性鉴别较为困难,主要依赖于术后病理诊断。超声新技术和人工智能的进步,在提高诊断准确性、减少不必要手术和降低误诊率方面展现了较大潜力。超声超微血流成像、超声造影及超声弹性成像等新技术,为甲状腺滤泡性肿瘤术前良、恶性鉴别诊断提供了新的途径。本文总结并探讨了上述超声新技术及基于人工智能的多种建模方法在甲状腺滤泡性肿瘤术前诊断中的应用价值,以期为临床决策提供科学依据。

关键词: 甲状腺, 滤泡性肿瘤, 超声

Abstract:

Conventional ultrasonography often struggles to accurately differentiate between benign and malignant thyroid follicular tumors, which relying heavily on postoperative pathological diagnosis. Recent advancements in novel ultrasound technologies and artificial intelligence(AI) have shown significant potential in improving diagnostic accuracy, reducing unnecessary surgeries, and decreasing misdiagnosis rates. Emerging ultrasound modalities, such as superb microvascular imaging, contrast-enhanced ultrasound, and ultrasound elastography, provide new approaches for preoperative differentiation of thyroid follicular tumors. This review summarized and discussed the application value of these novel ultrasound techniques and various AI-based modeling methods in the preoperative diagnosis of thyroid follicular tumors, aiming to provide a scientific basis for clinical decision-making.

Key words: Thyroid, Follicular neoplasm, Ultrasound

中图分类号: