外科理论与实践 ›› 2019, Vol. 24 ›› Issue (04): 362-366.doi: 10.16139/j.1007-9610.2019.04.018
张薇1 综述, 王利新1,2,*, 符伟国1,2 审校
收稿日期:
2019-04-15
出版日期:
2019-07-25
发布日期:
2019-08-25
通讯作者:
符伟国,E-mail: fu.weiguo@zs-hospital.sh.cn
作者简介:
*:共同第一作者
基金资助:
Received:
2019-04-15
Online:
2019-07-25
Published:
2019-08-25
中图分类号:
张薇, 王利新, 符伟国. 胸主动脉瘤及夹层的基因学研究进展[J]. 外科理论与实践, 2019, 24(04): 362-366.
[1] Vapnik JS, Kim JB, Isselbacher EM, et al.Characteristics and outcomes of ascending versus descending thoracic aortic aneurysms[J]. Am J Cardiol,2016,117(10):1683-1690. [2] Kang JH, Kim YW, Heo SH, et al. Treatment strategy based on the natural course of the disease for patients with spontaneous isolated abdominal aortic dissection[J]. J Vasc Surg,2017,66(6):1668-1678.e3. [3] Trimarchi S, Tsai T, Eagle KA, et al.Acute abdominal aortic dissection: insight from the International Registry of Acute Aortic Dissection(IRAD)[J]. J Vasc Surg,2007, 46(5):913-919. [4] Booher AM, Isselbacher EM, Nienaber CA, et al. The IRAD classification system for characterizing survival after aortic dissection[J]. Am J Med,2013,126(8):730.e19-e24. [5] Bottle A, Mariscalco G, Shaw MA, et al. Unwarranted variation in the quality of care for patients with diseases of the thoracic aorta[J]. J Am Heart Assoc,2017,6(3):pii: e004913. [6] Mariscalco G, Debiec R, Elefteriades JA, et al.Systema-tic review of studies that have evaluated screening tests in relatives of patients affected by nonsyndromic thoracic aortic disease[J]. J Am Heart Assoc,2018,7(15):e009302. [7] Zheng J, Guo J, Huang L, et al.Genetic diagnosis of acute aortic dissection in South China Han population using next-generation sequencing[J]. Int J Legal Med,2018,132(5):1273-1280. [8] Lemaire SA, Mcdonald ML, Guo DC, et al.Genome-wide association study identifies a susceptibility locus for thoracic aortic aneurysms and aortic dissections spanning FBN1 at 15q21.1[J]. Nat Genet,2011,43(10):996-1000. [9] Tan L, Li Z, Zhou C, et al.FBN1 mutations largely contribute to sporadic non-syndromic aortic dissection[J]. Hum Mol Genet,2017,26(24):4814-4822. [10] Guo DC, Hostetler EM, Fan Y, et al.Heritable thoracic aortic disease genes in sporadic aortic dissection[J]. J Am Coll Cardiol,2017,70(21):2728-2730. [11] Milewicz DM, Prakash SK, Ramirez F.Therapeutics targeting drivers of thoracic aortic aneurysms and acute aortic dissections: insights from predisposing genes and mouse models[J]. Annu Rev Med,2017,68:51-67. [12] Hiratzka LF, Bakris GL, Beckman JA, et al.2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with Thoracic Aortic Disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine[J]. Circulation,2010,121(13):e266-e369. [13] Pape LA, Tsai TT, Isselbacher EM, et al.Aortic diameter >or=5.5 cm is not a good predictor of type A aortic dissection: observations from the International Registry of Acute Aortic Dissection(IRAD)[J]. Circulation,2007,116(10):1120-1127. [14] Brautbar A, Lemaire SA, Franco LM, et al.FBN1 mutations in patients with descending thoracic aortic dissections[J]. Am J Med Genet A,2010,152A(2):413-416. [15] Regalado ES, Guo DC, Prakash S, et al.Aortic disease presentation and outcome associated with ACTA2 mutations[J]. Circ Cardiovasc Genet,2015,8(3):457-464. [16] Morisaki H, Akutsu K, Ogino H, et al.Mutation of ACTA2 gene as an important cause of familial and nonfamilial nonsyndromatic thoracic aortic aneurysm and/or dissection(TAAD)[J]. Hum Mutat,2009,30(10):1406-1411. [17] Disabella E, Grasso M, Gambarin FI, et al.Risk of dissection in thoracic aneurysms associated with mutations of smooth muscle alpha-actin 2(ACTA2)[J]. Heart,2011,97(4):321-326. [18] Renard M, Callewaert B, Baetens M, et al.Novel MYH11 and ACTA2 mutations reveal a role for enhanced TGFbeta signaling in FTAAD[J]. Int J Cardiol,2013,165(2):314-321. [19] Milewicz DM, Dietz HC, Miller DC.Treatment of aortic disease in patients with Marfan syndrome[J]. Circulation,2005,111(11):e150-e157. [20] Tran-Fadulu V, Pannu H, Kim DH, et al.Analysis of multigenerational families with thoracic aortic aneurysms and dissections due to TGFBR1 or TGFBR2 mutations[J]. J Med Genet,2009,46(9):607-613. [21] Attias D, Stheneur C, Roy C, et al.Comparison of clinical presentations and outcomes between patients with TGFBR2 and FBN1 mutations in Marfan syndrome and related disorders[J]. Circulation,2009,120(25):2541-2549. [22] Guo DC, Pannu H, Tran-Fadulu V, et al.Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections[J]. Nat Genet,2007,39(12):1488-1493. [23] Kuang SQ, Guo DC, Prakash SK, et al.Recurrent chromosome 16p13.1 duplications are a risk factor for aortic dissections[J]. PLoS Genet,2011,7(6):e1002118. [24] Isselbacher EM, Bonaca MP, Di Eusanio M, et al.Recurrent aortic dissection: observations from the International Registry of Aortic Dissection[J]. Circulation,2016,134(14):1013-1024. [25] Kwartler CS, Gong L, Chen J, et al.Variants of unknown significance in genes associated with heritable thoracic aortic disease can be low penetrant “risk variants”[J]. Am J Hum Genet,2018,103(1):138-143. [26] Platt RJ, Chen S, Zhou Y, et al.CRISPR-Cas9 knockin mice for genome editing and cancer modeling[J]. Cell,2014,159(2):440-455. [27] Yang H, Wang H, Jaenisch R.Generating genetically modified mice using CRISPR/Cas-mediated genome engineering[J]. Nat Protoc,2014,9(8):1956-1968. [28] Svensson LG, Kouchoukos NT, Miller DC, et al.Expert consensus document on the treatment of descending thoracic aortic disease using endovascular stent-grafts[J]. Ann Thorac Surg,2008,85(1 Suppl):S1-S41. [29] Gaul C, Dietrich W, Friedrich I, et al.Neurological symptoms in type A aortic dissections[J]. Stroke,2007,38(2):292-297. [30] Gilon D, Mehta RH, Oh JK, et al.Characteristics and in-hospital outcomes of patients with cardiac tamponade complicating type A acute aortic dissection[J]. Am J Cardiol,2009,103(7):1029-1031. [31] Nienaber CA, Clough RE.Management of acute aortic dissection[J]. Lancet,2015,385(9970):800-811. [32] Humphrey JD, Milewicz DM, Tellides G, et al.Cell biology. Dysfunctional mechanosensing in aneurysms[J]. Science,2014,344(6183):477-479. [33] Humphrey JD, Schwartz MA, Tellides G, et al.Role of mechanotransduction in vascular biology: focus on thoracic aortic aneurysms and dissections[J]. Circ Res,2015, 116(8):1448-1461. [34] Mallat Z, Tedgui A, Henrion D.Role of microvascular tone and extracellular matrix contraction in the regulation of interstitial fluid: implications for aortic dissection[J]. Arterioscler Thromb Vasc Biol,2016,36(9):1742-1747. [35] Prakash SK, Lemaire SA, Guo DC, et al.Rare copy number variants disrupt genes regulating vascular smooth muscle cell adhesion and contractility in sporadic thoracic aortic aneurysms and dissections[J]. Am J Hum Genet,2010,87(6):743-756. [36] Doyle JJ, Doyle AJ, Wilson NK, et al. A deleterious gene-by-environment interaction imposed by calcium channel blockers in Marfan syndrome[J]. Elife,2015,4.pii:e08648. [37] Simpson CF, Taylor WJ.Effect of hydralazine on aortic rupture induced by B-aminopropionitrile in turkeys[J]. Circulation,1982,65(4):704-708. [38] Ferruzzi J, Murtada SI, Li G, et al.Pharmacologically improved contractility protects against aortic dissection in mice with disrupted transforming growth factor-beta signaling despite compromised extracellular matrix properties[J]. Arterioscler Thromb Vasc Biol,2016,36(5):919-927. [39] Zhou X, Wang R, Zhang T, et al.Identification of lysophosphatidylcholines and sphingolipids as potential biomarkers for acute aortic dissection via serum metabolomics[J]. Eur J Vasc Endovasc Surg,2018,57(3):434-441. [40] Lindsay ME, Schepers D, Bolar NA, et al.Loss-of-function mutations in TGFB2 cause a syndromic presentation of thoracic aortic aneurysm[J]. Nat Genet,2012,44(8):922-927. [41] Cook JR, Clayton NP, Carta L, et al.Dimorphic effects of transforming growth factor-beta signaling during aortic aneurysm progression in mice suggest a combinatorial therapy for Marfan syndrome[J]. Arterioscler Thromb Vasc Biol,2015,35(4):911-917. [42] Lavoie P, Robitaille G, Agharazii M, et al.Neutralization of transforming growth factor-beta attenuates hypertension and prevents renal injury in uremic rats[J]. J Hypertens,2005,23(10):1895-1903. [43] Chen S, Lechleider RJ.Transforming growth factor-beta-induced differentiation of smooth muscle from a neural crest stem cell line[J]. Circ Res,2004,94(9):1195-1202. [44] Habashi JP, Judge DP, Holm TM, et al.Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome[J]. Science,2006,312(5770):117-121. [45] Groenink M, Den Hartog AW, Franken R, et al.Losartan reduces aortic dilatation rate in adults with Marfan syndrome: a randomized controlled trial[J]. Eur Heart J,2013,34(45):3491-3500. [46] Franken R, Den Hartog AW, Radonic T, et al.Beneficial outcome of losartan therapy depends on type of FBN1 mutation in Marfan syndrome[J]. Circ Cardiovasc Genet,2015,8(2):383-388. [47] Lacro RV, Dietz HC, Sleeper LA, et al.Atenolol versus losartan in children and young adults with Marfan's syndrome[J]. N Engl J Med,2014,371(22):2061-2071. [48] Milleron O, Arnoult F, Ropers J, et al.Marfan Sartan: a randomized, double-blind, placebo-controlled trial[J]. Eur Heart J,2015,36(32):2160-2166. [49] Gibbons GH, Pratt RE, Dzau VJ.Vascular smooth muscle cell hypertrophy vs. hyperplasia. Autocrine transfor-ming growth factor-beta 1 expression determines growth response to angiotensin Ⅱ[J]. J Clin Invest,1992,90(2):456-461. [50] Chung AW, Yang HH, Radomski MW, et al.Long-term doxycycline is more effective than atenolol to prevent thoracic aortic aneurysm in Marfan syndrome through the inhibition of matrix metalloproteinase-2 and -9[J]. Circ Res,2008,102(8):e73-e85. [51] Emrich FC, OkamuraH, Dalal AR, et al. Enhanced caspase activity contributes to aortic wall remodeling and early aneurysm development in a murine model of Marfan syndrome[J]. Arterioscler Thromb Vasc Biol,2015,35(1):146-154. |
[1] | 马亚萍 吴镝. 唇腭裂小鼠模型的研究进展[J]. 组织工程与重建外科杂志, 2022, 18(4): 360-. |
[2] | 刘泓源 顾豪 杨希 胡丽 徐梓安 陈辉 林晓曦. 一种基于DNA测序结果的静脉/淋巴管畸形新基因分型[J]. 组织工程与重建外科杂志, 2022, 18(3): 209-. |
[3] | 赵晨薇 马刚 林晓曦. 葡萄酒色斑增厚机制的研究进展[J]. 组织工程与重建外科杂志, 2022, 18(1): 83-. |
[4] | 舒兰, 陈小松. ER+/HER2-乳腺癌多基因阵列检测应用:ASCO指南解读与瑞金医院临床实践[J]. 外科理论与实践, 2022, 27(05): 416-420. |
[5] | 杨崔燕, 王豪雨, 陈小松, 沈坤炜. 抑癌基因TP53突变状态与三阴性乳腺癌病人预后的研究[J]. 外科理论与实践, 2022, 27(05): 421-428. |
[6] | 王杰强 综述, 马德奎 审校. Trop2基因与三阴性乳腺癌的研究进展[J]. 外科理论与实践, 2022, 27(05): 473-477. |
[7] | 马雪菲, 王学锋, 王侃侃. 浆细胞瘤变异体易位1和MYC基因在泛癌中的表达及生存期预测价值分析[J]. 诊断学理论与实践, 2022, 21(04): 490-496. |
[8] | 郝旭, 王伟铭. 依靠肾活检确诊的以肾脏病变为主要表现的法布里病1例报告[J]. 诊断学理论与实践, 2022, 21(04): 527-529. |
[9] | 陈宏, 沈银忠. 人类免疫缺陷病毒感染/艾滋病合并结核病的诊治进展[J]. 诊断学理论与实践, 2022, 21(04): 530-534. |
[10] | 高健, 王德琴, 周永华, 缪娴静, 陈宇, 景鑫, 王艳. 血清生长刺激表达基因2蛋白和脂蛋白相关磷脂酶A2与维持性血液透析患者心血管事件的关系[J]. 内科理论与实践, 2022, 17(04): 295-300. |
[11] | 高晶晶, 高艳虹. 早发2型糖尿病流行病学、临床特征及病因机制的研究进展[J]. 内科理论与实践, 2022, 17(04): 344-348. |
[12] | 徐娜娜, 吴涛, 寇明坤, 白海. ASXL1基因突变在急性髓系白血病中的研究进展[J]. 内科理论与实践, 2022, 17(04): 353-355. |
[13] | 杨慧, 李云璐, 杨康, 李世举, 何瑾. 进行性肌阵挛共济失调近亲家系全外显子测序漏诊原因分析与对策[J]. 诊断学理论与实践, 2022, 21(04): 456-461. |
[14] | 孔秀芳, 姜林娣. 大动脉炎发病机制及诊疗研究进展[J]. 内科理论与实践, 2022, 17(03): 262-266. |
[15] | 史曼曼, 王语欣, 马毓华, 王朝晖. 系统性红斑狼疮的遗传学研究进展[J]. 内科理论与实践, 2022, 17(03): 267-272. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||