Journal of Surgery Concepts & Practice ›› 2024, Vol. 29 ›› Issue (02): 161-169.doi: 10.16139/j.1007-9610.2024.02.12
• Original article • Previous Articles Next Articles
WU Xiongyan1, LI Zhen2, YU Zhenjia1, SU liping1()
Received:
2023-07-05
Online:
2024-03-25
Published:
2024-07-01
Contact:
SU liping
E-mail:suliping@shsmu.edu.cn
CLC Number:
WU Xiongyan, LI Zhen, YU Zhenjia, SU liping. Role and possible mechanism of pseudogene FMO6P in inhibiting invasion and metastasis of gastric cancer[J]. Journal of Surgery Concepts & Practice, 2024, 29(02): 161-169.
Tab 1
Correlation between mRNA expression level of FMO6P and clinical pathology in gastric cancer
Expression of FMO6P | χ2/Z/t value | P value | ||
---|---|---|---|---|
High(n=11) | Low(n=69) | |||
Gender | 0.695 | 0.404 | ||
Male | 9 | 48 | ||
Female | 2 | 21 | ||
Age | 0.155 | 0.693 | ||
> 60 years | 7 | 48 | ||
≤ 60 years | 4 | 21 | ||
Tumor diameter (cm) | 8.449 | 0.003 | ||
> 5 | 5 | 58 | ||
≤ 5 | 6 | 11 | ||
Pathological T stage | 9.323 | 0.002 | ||
T1, T2 | 8 | 8 | ||
T3, T4 | 11 | 61 | ||
Pathological N stage | 1.382 | 0.239 | ||
- | 2 | 25 | ||
+ | 9 | 44 | ||
Metastasis | 0.949 | 0.330 | ||
- | 9 | 63 | ||
+ | 2 | 6 | ||
TNM stage | 4.071 | 0.043 6 | ||
Ⅰ+Ⅱ | 1 | 28 | ||
Ⅲ+Ⅳ | 10 | 41 |
Fig 3
FMO6P inhibited the invasion and migration ability of gastric cancer cells A: Overexpression of FMO6P inhibited the migration ability of gastric cancer cells (200 x); B: Knocking down FMO6P promoted the migration ability of gastric cancer cells (200 x); C: Overexpression of FMO6P inhibited the invasive ability of gastric cancer cells (200 x); D: Knocking down FMO6P promoted the invasive ability of gastric cancer cells (200 x); E: Transwell invasion and migration cell count (* P<0.05, * * P<0.01, * * * P<0.001)
Fig 5
FMO6P inhibited the subcutaneous tumorigenesis ability, and intraperitoneal implantation and dissemination ability of gastric cancer cells in nude mice A: Growth curve of FMO6P-overexpressing gastric cancer cells in nude mice subcutaneously; B: The tumor size of FMO6P-overexpressing gastric cancer cells formed after 30 days of subcutaneous inoculation in nude mice; C: Statistical analysis of the number of peritoneal metastatic nodules formed after 4 weeks of intraperitoneal inoculation of FMO6P-overexpressing gastric cancer cells in nude mice; D: Peritoneal metastatic nodules formed after 4 weeks of intraperitoneal inoculation of FMO6P-overexpressing gastric cancer cells in nude mice.
Fig 6
FMO6P inhibited the activation of AKT/mTOR signaling pathway in gastric cancer cells A: The activation levels of AKT and mTOR after overexpression or knockdown of FMO6P in gastric cancer cells; B: Statistical analysis of grayscale values of protein bands in Fig6A (*P<0.05, **P<0.01, ***P<0.001).
[1] | YANG L, ZHENG R S, WANG N, et al. Incidence and mortality of stomach cancer in China 2014[J]. Chin J Cancer Res, 2018, 30(3):291-298. |
[2] | MIGUEL V, LAMAS S, ESPINOSA-DIEZ C. Role of non-coding-RNAs in response to environmental stressors and consequences on human health[J]. Redox Biol, 2020,37:101580. |
[3] | XIAO-JIE L, AI-MEI G, LI-JUAN J, et al. Pseudogene in cancer:real functions and promising signature[J]. J Med Genet, 2015, 52(1):17-24. |
[4] | MA H W, MA T S, CHEN M, et al. The pseudogene-derived long non-coding RNA SFTA1P suppresses cell proliferation,migration,and invasion in gastric cancer[J]. Biosci Rep, 2018, 38(2):BSR20171193. |
[5] | LI D D, SHE J J, HU X H, et al. The ELF3-regulated lncRNA UBE2CP3 is over-stabilized by RNA-RNA interactions and drives gastric cancer metastasis via miR-138-5p/ITGA2 axis[J]. Oncogene, 2021, 40(35):5403-5415. |
[6] |
GUO Y M, WANG Y M, MA Y L, et al. Upregulation of lncRNA SUMO1P3 promotes proliferation, invasion and drug resistance in gastric cancer through interacting with the CNBP protein[J]. RSC Adv, 2020, 10(10):6006-6016.
doi: 10.1039/c9ra09497k pmid: 35497433 |
[7] | XU Y C, YU Y, WEI C C, et al. Over-expression of oncigenic pesudogene DUXAP10 promotes cell proliferation and invasion by regulating LATS1 and beta-catenin in gastric cancer[J]. J Exp Clin Cancer Res, 2018, 37(1):13. |
[8] | HERNANDEZ D, JANMOHAMED A, CHANDAN P, et al. Organization and evolution of the flavin-containing monooxygenase genes of human and mouse:identification of novel gene and pseudogene clusters[J]. Pharmacogene-tics, 2004, 14(2):117-130. |
[9] |
FIORENTINI F, GEIER M, BINDA C, et al. Biocatalytic characterization of human FMO5: unearthing baeyer-villiger reactions in humans[J]. ACS Chem Biol, 2016, 11(4):1039-1048.
doi: 10.1021/acschembio.5b01016 pmid: 26771671 |
[10] | LI H, YU B Q, LI J F, et al. Characterization of differentially expressed genes involved in pathways associated with gastric cancer[J]. PLoS One, 2015, 10(4):e0125013. |
[11] |
PASTUSHENKO I, BLANPAIN C. EMT transition states during tumor progression and metastasis[J]. Trends Cell Biol, 2019, 29(3):212-226.
doi: S0962-8924(18)30201-0 pmid: 30594349 |
[12] |
SAITOH M. Involvement of partial EMT in cancer progression[J]. J Biochem, 2018, 164(4):257-264.
doi: 10.1093/jb/mvy047 pmid: 29726955 |
[13] | SINGH M, YELLE N, VENUGOPAL C, et al. EMT:mechanisms and therapeutic implications[J]. Pharmacol Ther, 2018,182:80-94. |
[14] | FATTAHI S, AMJADI-MOHEB F, TABARIPOUR R, et al. PI3K/AKT/mTOR signaling in gastric cancer: epigenetics and beyond[J]. Life Sci, 2020,262:118513. |
[15] |
WANG X J, LI X D, LIN F K, et al. The lnc-CTSLP8 upregulates CTSL1 as a competitive endogenous RNA and promotes ovarian cancer metastasis[J]. J Exp Clin Cancer Res, 2021, 40(1):151.
doi: 10.1186/s13046-021-01957-z pmid: 33933142 |
[16] | ZHANG L M, WANG P, LIU X M, et al. LncRNA SUMO1P3 drives colon cancer growth, metastasis and angiogenesis[J]. Am J Transl Res, 2017, 9(12):5461-5472. |
[17] |
WANG X H, ZHANG L H, LIANG Q Y, et al. DUSP5P1 promotes gastric cancer metastasis and platinum drug resistance[J]. Oncogenesis, 2022, 11(1):66.
doi: 10.1038/s41389-022-00441-3 pmid: 36307394 |
[18] | BAKIR B, CHIARELLA A M, PITARRESI J R, et al. EMT,MET,plasticity,and tumor metastasis[J]. Trends Cell Biol, 2020, 30(10):764-776. |
[19] | BAJ J, KORONA-GŁOWNIAK I, FORMA I, et al. Mechanisms of the epithelial-mesenchymal transition and tumor microenvironment in helicobacter pylori-induced gastric cancer[J]. Cells, 2020, 9(4):1055. |
[20] |
NOOROLYAI S, SHAJARI N, BAGHBANI E, et al. The relation between PI3K/AKT signalling pathway and cancer[J]. Gene, 2019, 698:120-128.
doi: S0378-1119(19)30217-3 pmid: 30849534 |
[21] | YANG X, ZHU W. ERBB3 mediates the PI3K/AKT/mTOR pathway to alter the epithelial-mesenchymal transition in cervical cancer and predict immunity filtration outcome[J]. Exp Ther Med, 2023, 25(4):146. |
[22] |
LI H, GUAN B X, LIU S, et al. PTPN14 promotes gastric cancer progression by PI3KA/AKT/mTOR pathway[J]. Cell Death Dis, 2023, 14(3):188.
doi: 10.1038/s41419-023-05712-4 pmid: 36898991 |
[23] | CHEN H R, ZHANG L F, ZUO M N, et al. Inhibition of apoptosis through AKT-mTOR pathway in ovarian cancer and renal cancer[J]. Aging(Albany NY), 2023, 15(4):1210-1227. |
[24] |
GHAREGHOMI S, ATABAKI V, ABDOLLAHZADEH N, et al. Bioactive PI3-kinase/Akt/mTOR inhibitors in targeted lung cancer therapy[J]. Adv Pharm Bull, 2023, 13(1):24-35.
doi: 10.34172/apb.2023.003 pmid: 36721812 |
[25] | WANG H W, CHEN Y J, YUAN Q Z, et al. HRK inhibits colorectal cancer cells proliferation by suppressing the PI3K/AKT/mTOR pathway[J]. Front Oncol, 2022,12:1053510. |
[26] | LI P, ZHANG Z, LV H, et al. Inhibiting the expression of STARD3 induced apoptosis via the inactivation of PI3K/AKT/mTOR pathway on ER(+) breast cancer[J]. Tissue Cell, 2022,79:101971. |
[27] |
PETERSON R T, BEAL P A, COMB M J, et al. FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions[J]. J Biol Chem, 2000, 275(10):7416-7423.
doi: 10.1074/jbc.275.10.7416 pmid: 10702316 |
[28] | NAVÉ B T, OUWENS M, WITHERS D J, et al. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation[J]. Biochem J, 1999, 344 Pt 2(Pt 2):427-431. |
[29] | WANG C, YANG Z, XU E, et al. Apolipoprotein C-Ⅱ induces EMT to promote gastric cancer peritoneal metastasis via PI3K/AKT/mTOR pathway[J]. Clin Transl Med, 2021, 11(8):e522. |
[30] | WANG J, JIANG C H, LI N, et al. The circEPSTI1/mir-942-5p/LTBP2 axis regulates the progression of OSCC in the background of OSF via EMT and the PI3K/Akt/mTOR pathway[J]. Cell Death Dis, 2020, 11(8):682. |
[31] | MA Z, LOU S P, JIANG Z. PHLDA2 regulates EMT and autophagy in colorectal cancer via the PI3K/AKT signa-ling pathway[J]. Aging(Albany NY), 2020, 12(9):7985-8000. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||