Journal of Surgery Concepts & Practice ›› 2025, Vol. 30 ›› Issue (2): 165-170.doi: 10.16139/j.1007-9610.2025.02.12
• Review • Previous Articles Next Articles
LIAO Zhenyu, ZHU Wenxin,*, YAN Jiqi
Received:
2025-02-20
Online:
2025-03-25
Published:
2025-07-07
CLC Number:
LIAO Zhenyu, ZHU Wenxin, YAN Jiqi. Research progress on the immune microenvironment and immunotherapy of thyroid cancer[J]. Journal of Surgery Concepts & Practice, 2025, 30(2): 165-170.
[1] |
LA VECCHIA C, MALVEZZI M, BOSETTI C, et al. Thyroid cancer mortality and incidence: a global overview[J]. Int J Cancer, 2015, 136(9):2187-2195.
doi: 10.1002/ijc.29251 pmid: 25284703 |
[2] |
CHEN A Y, JEMAL A, WARD E M. Increasing incidence of differentiated thyroid cancer in the United States, 1988-2005[J]. Cancer, 2009, 115(16):3801-3807.
doi: 10.1002/cncr.24416 pmid: 19598221 |
[3] |
MAZZAFERRI E L, JHIANG S M. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer[J]. Am J Med, 1994, 97(5):418-428.
doi: 10.1016/0002-9343(94)90321-2 pmid: 7977430 |
[4] | LOPEZ GAVILANEZ E, NAVARRO GRIJALVA M. Studying the incidence of thyroid cancer in Ecuador:2016-2021[J]. Heliyon, 2024, 10(10):e30711. |
[5] | SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1):7-33. |
[6] | SUN J, SHI R, ZHANG X, et al. Characterization of immune landscape in papillary thyroid cancer reveals distinct tumor immunogenicity and implications for immunotherapy[J]. Oncoimmunology, 2021, 10(1):e1964189. |
[7] |
THORSSON V, GIBBS D L, BROWN S D, et al. The immune landscape of cancer[J]. Immunity, 2019, 51(2):411-412.
doi: S1074-7613(19)30330-9 pmid: 31433971 |
[8] | WANG T, SHI J, LI L, et al. Single-cell transcriptome analysis reveals inter-tumor heterogeneity in bilateral papillary thyroid carcinoma[J]. Front Immunol,2022, 13:840811 |
[9] |
WATANABE S, ALEXANDER M, MISHARIN A V, et al. The role of macrophages in the resolution of inflammation[J]. J Clin Invest, 2019, 129(7):2619-2628.
doi: 10.1172/JCI124615 pmid: 31107246 |
[10] |
CHRISTOFIDES A, STRAUSS L, YEO A, et al. The complex role of tumor-infiltrating macrophages[J]. Nat Immunol, 2022, 23(8):1148-1156.
doi: 10.1038/s41590-022-01267-2 pmid: 35879449 |
[11] |
JUNG K Y, CHO S W, KIM Y A, et al. Cancers with higher density of tumor-associated macrophages were associated with poor survival rates[J]. J Pathol Transl Med, 2015, 49(4):318-324.
doi: 10.4132/jptm.2015.06.01 pmid: 26081823 |
[12] |
QING W, FANG W Y, YE L, et al. Density of tumor-associated macrophages correlates with lymph node metastasis in papillary thyroid carcinoma[J]. Thyroid, 2012, 22(9):905-910.
doi: 10.1089/thy.2011.0452 pmid: 22870901 |
[13] |
FANG W, YE L, SHEN L, et al. Tumor-associated macrophages promote the metastatic potential of thyroid papillary cancer by releasing CXCL8[J]. Carcinogenesis, 2014, 35(8):1780-1787.
doi: 10.1093/carcin/bgu060 pmid: 24608042 |
[14] | CUNHA L L, MORARI E C, GUIHEN A C, et al. Infiltration of a mixture of immune cells may be related to good prognosis in patients with differentiated thyroid carcinoma[J]. Clin Endocrinol (Oxf), 2012, 77(6):918-925. |
[15] | DONADON M, TORZILLI G, CORTESE N, et al. Macrophage morphology correlates with single-cell diversity and prognosis in colorectal liver metastasis[J]. J Exp Med, 2020, 217(11):e20191847. |
[16] | MARTINEZ F O, SICA A, MANTOVANI A, et al. Macrophage activation and polarization[J]. Front Biosci, 2008,13:453-461. |
[17] | RYDER M, GHOSSEIN R A, RICARTE-FILHO J C, et al. Increased density of tumor-associated macrophages is associated with decreased survival in advanced thyroid cancer[J]. Endocr Relat Cancer, 2008, 15(4):1069-1074. |
[18] | SOLITO S, MARIGO I, PINTON L, et al. Myeloid-derived suppressor cell heterogeneity in human cancers[J]. Ann N Y Acad Sci, 2014,1319:47-65. |
[19] | XU L, ZHOU C, LIANG Y, et al. Epigenetic modifications in the accumulation and function of myeloid-derived suppressor cells[J]. Front Immunol,2022, 13:1016870 |
[20] |
SUZUKI S, SHIBATA M, GONDA K, et al. Immunosuppression involving increased myeloid-derived suppressor cell levels, systemic inflammation and hypoalbuminemia are present in patients with anaplastic thyroid cancer[J]. Mol Clin Oncol, 2013, 1(6):959-964.
doi: 10.3892/mco.2013.170 pmid: 24649277 |
[21] | APONTE-LÓPEZ A, MUÑOZ-CRUZ S. Mast cells in the tumor microenvironment[J]. Adv Exp Med Biol, 2020,1273:159-173. |
[22] |
WROBLEWSKI M, BAUER R, CUBAS Córdova M, et al. Mast cells decrease efficacy of anti-angiogenic therapy by secreting matrix-degrading granzyme B[J]. Nat Commun, 2017, 8(1):269.
doi: 10.1038/s41467-017-00327-8 pmid: 28814715 |
[23] |
MELILLO R M, GUARINO V, AVILLA E, et al. Mast cells have a protumorigenic role in human thyroid cancer[J]. Oncogene, 2010, 29(47):6203-6215.
doi: 10.1038/onc.2010.348 pmid: 20729915 |
[24] |
VISCIANO C, LIOTTI F, PREVETE N, et al. Mast cells induce epithelial-to-mesenchymal transition and stem cell features in human thyroid cancer cells through an IL-8-Akt-Slug pathway[J]. Oncogene, 2015, 34(40):5175-5186.
doi: 10.1038/onc.2014.441 pmid: 25619830 |
[25] |
SMYTH M J, CRETNEY E, KELLY J M, et al. Activation of NK cell cytotoxicity[J]. Mol Immunol, 2005, 42(4):501-510.
doi: 10.1016/j.molimm.2004.07.034 pmid: 15607806 |
[26] | VYAS M, REQUESENS M, NGUYEN T H, et al. Natural killer cells suppress cancer metastasis by eliminating circulating cancer cells[J]. Front Immunol,2023, 13:1098445 |
[27] | GOGALI F, PATERAKIS G, RASSIDAKIS G Z, et al. Phenotypical analysis of lymphocytes with suppressive and regulatory properties (Tregs) and NK cells in the pa-pillary carcinoma of thyroid[J]. J Clin Endocrinol Metab, 2012, 97(5):1474-1482. |
[28] | YIN M, DI G, BIAN M. Dysfunction of natural killer cells mediated by PD-1 and Tim-3 pathway in anaplastic thyroid cancer[J]. Int Immunopharmacol, 2018,64:333-339. |
[29] | WENNERBERG E, PFEFFERLE A, EKBLAD L, et al. Human anaplastic thyroid carcinoma cells are sensitive to NK cell-mediated lysis via ULBP2/5/6 and chemoattract NK cells[J]. Clin Cancer Res, 2014, 20(22):5733-5744. |
[30] |
XIA A, ZHANG Y, XU J, et al. T cell dysfunction in cancer immunity and immunotherapy[J]. Front Immunol,2019, 10:1719
doi: 10.3389/fimmu.2019.01719 pmid: 31379886 |
[31] |
SCHREIBER R D, OLD L J, SMYTH M J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion[J]. Science, 2011, 331(6024):1565-1570.
doi: 10.1126/science.1203486 pmid: 21436444 |
[32] |
THOMMEN D S, SCHUMACHER T N. T cell dysfunction in cancer[J]. Cancer Cell, 2018, 33(4):547-562.
doi: S1535-6108(18)30116-8 pmid: 29634943 |
[33] |
BASTMAN J J, SERRACINO H S, ZHU Y, et al. Tumor-infiltrating T cells and the PD-1 checkpoint pathway in advanced differentiated and anaplastic thyroid cancer[J]. J Clin Endocrinol Metab, 2016, 101(7):2863-2873.
doi: 10.1210/jc.2015-4227 pmid: 27045886 |
[34] |
GLICK A B, WODZINSKI A, FU P, et al. Impairment of regulatory T-cell function in autoimmune thyroid disease[J]. Thyroid, 2013, 23(7):871-878.
doi: 10.1089/thy.2012.0514 pmid: 23379353 |
[35] | HALVORSEN E C, MAHMOUD S M, BENNEWITH K L. Emerging roles of regulatory T cells in tumour progression and metastasis[J]. Cancer Metastasis Rev, 2014, 33(4):1025-1041. |
[36] | ARENA A, STIGLIANO A, BELCASTRO E, et al. p53 activation effect in the balance of T regulatory and effector cell subsets in patients with thyroid cancer and autoimmunity[J]. Front Immunol,2021, 12:728381 |
[37] |
FRENCH J D, WEBER Z J, FRETWELL D L, et al. Tumor-associated lymphocytes and increased FoxP3+ regulatory T cell frequency correlate with more aggressive papillary thyroid cancer[J]. J Clin Endocrinol Metab, 2010, 95(5):2325-2333.
doi: 10.1210/jc.2009-2564 pmid: 20207826 |
[38] | IMAM S, PAPARODIS R, SHARMA D, et al. Lymphocytic profiling in thyroid cancer provides clues for failure of tumor immunity[J]. Endocr Relat Cancer, 2014, 21(3):505-516. |
[39] | MENICALI E, GUZZETTI M, MORELLI S, et al. Immune landscape of thyroid cancers: new insights[J]. Front Endocrinol (Lausanne),2021, 11:637826 |
[40] | FRENCH J D, KOTNIS G R, SAID S, et al. Programmed death-1+ T cells and regulatory T cells are enriched in tumor-involved lymph nodes and associated with aggressive features in papillary thyroid cancer[J]. J Clin Endocrinol Metab, 2012, 97(6):E934-E943. |
[41] |
MEHNERT J M, VARGA A, BROSE M S, et al. Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with advanced, PD-L1-positive papillary or follicular thyroid cancer[J]. BMC Cancer, 2019, 19(1):196.
doi: 10.1186/s12885-019-5380-3 pmid: 30832606 |
[42] |
DIERKS C, SEUFERT J, AUMANN K, et al. Combination of lenvatinib and pembrolizumab is an effective treatment option for anaplastic and poorly differentiated thyroid carcinoma[J]. Thyroid, 2021, 31(7):1076-1085.
doi: 10.1089/thy.2020.0322 pmid: 33509020 |
[43] | NIU Y, DING Z, DENG X, et al. A novel multimodal therapy for anaplastic thyroid carcinoma: 125I seed implantation plus apatinib after surgery[J]. Front Endocrinol (Lausanne),2020, 11:207 |
[44] | KIM S, CHO S W, MIN H S, et al. The expression of tumor-associated macrophages in papillary thyroid carcinoma[J]. Endocrinol Metab (Seoul), 2013, 28(3):192-198. |
[45] |
NAOUM G E, MORKOS M, KIM B, et al. Novel targeted therapies and immunotherapy for advanced thyroid cancers[J]. Mol Cancer, 2018, 17(1):51.
doi: 10.1186/s12943-018-0786-0 pmid: 29455653 |
[46] |
RATH G M, SCHNEIDER C, DEDIEU S, et al. The C-terminal CD47/IAP-binding domain of thrombospondin-1 prevents camptothecin- and doxorubicin-induced apoptosis in human thyroid carcinoma cells[J]. Biochim Biophys Acta, 2006, 1763(10):1125-1134.
pmid: 16962673 |
[47] | GUO C, MANJILI M H, SUBJECK J R, et al. Therapeutic cancer vaccines: past, present, and future[J]. Adv Cancer Res, 2013,119:421-475. |
[48] |
LENNERZ V, GROSS S, GALLERANI E, et al. Immunologic response to the survivin-derived multi-epitope vaccine EMD640744 in patients with advanced solid tumors[J]. Cancer Immunol Immunother, 2014, 63(4):381-394.
doi: 10.1007/s00262-013-1516-5 pmid: 24487961 |
[49] | WANG Y, ZHANG J, WU Y, et al. Mannan-modified ade-novirus targeting TERT and VEGFR-2: a universal tumour vaccine[J]. Sci Rep,2015, 5:11275 |
[50] | SCHOTT M, SEISSLER J, LETTMANN M, et al. Immunotherapy for medullary thyroid carcinoma by dendritic cell vaccination[J]. J Clin Endocrinol Metab, 2001, 86(10):4965-4969. |
[51] | SHONKA D C JR., HO A, CHINTAKUNTLAWAR A V, et al. American head and neck society endocrine surgery section and international thyroid oncology group consensus statement on mutational testing in thyroid cancer: defining advanced thyroid cancer and its targeted treatment[J]. Head Neck, 2022, 44(6):1277-1300. |
[1] | LIU Kun, GUO Wei. Prevention and management of immune-related adverse events for biliary tract cancers [J]. Journal of Surgery Concepts & Practice, 2025, 30(2): 112-119. |
[2] | LI Chun, MA Zuyi, SUN Jia, LI Binglu. Systemic therapy for advanced cholangiocarcinoma: divergences in global guidelines and regional clinical implementation [J]. Journal of Surgery Concepts & Practice, 2025, 30(2): 93-100. |
[3] | WANG Yizhou, WEI Qi, JIN Huimin, CHEH Lei, LIANG Haibin, ZHOU Yunlan. Clinical application of circulating tumor cell in advanced gastric cancer [J]. Journal of Surgery Concepts & Practice, 2024, 29(06): 549-554. |
[4] | AN Huihui, WU Tao, LIU Wenhui, TIAN Sirui. A Mendelian randomized study on the correlation between 91 inflammatory protein levels and the risk of acute myeloid leukemia [J]. Journal of Diagnostics Concepts & Practice, 2024, 23(05): 509-516. |
[5] | ZHANG Zhiping, CAI Shilong, GENG Yanlong, LIU Shiyou. Analysis of incidence trend of thyroid cancer in Baoshan District, Shanghai from 2000 to 2022 [J]. Journal of Diagnostics Concepts & Practice, 2024, 23(04): 378-384. |
[6] | WANG Yaqi, XIA Fan, ZHANG Zhen. Review and prospect of neoadjuvant chemoradiotherapy combined with immunotherapy in locally advanced rectal cancer [J]. Journal of Surgery Concepts & Practice, 2024, 29(03): 220-229. |
[7] | ZHANG Tianshuai, ZHOU Leqi, YU Guanyu, ZHANG Wei. Current status and prospect of CAR-T cell immunotherapy for colorectal cancer [J]. Journal of Surgery Concepts & Practice, 2023, 28(05): 483-487. |
[8] | LIN Tingyu, ZHAO Yanna, FEI Jian. The current status of thermal ablation in the treatment of papillary thyroid microcarcinoma [J]. Journal of Surgery Concepts & Practice, 2023, 28(05): 477-482. |
[9] | YANG Yingchi, PANG Kai, ZHANG Zhongtao. Influence of neoadjuvant radiotherapy combined with immunotherapy on minimally invasive surgeries for rectal cancer [J]. Journal of Surgery Concepts & Practice, 2023, 28(03): 186-189. |
[10] | HAN Xu, WANG Wenquan, LOU Wenhui, LIU Liang. Emerging developments in immune checkpoint inhibitor therapy for gastroenteropancreatic neuroendocrine neoplasm [J]. Journal of Surgery Concepts & Practice, 2023, 28(03): 267-272. |
[11] | XING Ying, CHENG Shi. Neoadjuvant therapy for gallbladder cancer: current status and challenge [J]. Journal of Surgery Concepts & Practice, 2023, 28(02): 110-114. |
[12] | LI Jianfang, YU Junxian, YAN Chao, ZHU Zhenggang, LIU Bingya. Hotspots in basic and translational research of gastric cancer [J]. Journal of Surgery Concepts & Practice, 2023, 28(01): 7-16. |
[13] | ZHANG Xihao, ZHANG Xinyun, CAO Manqing, ZHANG Jinliang, WANG Huaqi, ZHANG Su, FU Zhou, WANG Lu, ZHANG Ti. Both anti-angiogenesis and immunotherapy combined with interventional therapy in treatment of hepatocellular carcinoma: effect of hepatic artery infusion chemotherapy compared with hepatic artery chemoembolization [J]. Journal of Surgery Concepts & Practice, 2022, 27(02): 152-157. |
[14] | WU Chunxiao, GU Kai, PANG Yi, BAO Pingping, WANG Chunfang, SHI Liang, XIANG Yongmei, GONG Yangming, DOU Jianming, WU Mengyin, FU Chen, SHI Yan. Thyroid cancer incidence and mortality in Shanghai China 2016 and trends from 2002 to 2016 [J]. Journal of Surgery Concepts & Practice, 2022, 27(01): 58-65. |
[15] | ZONG Chunyan,SHEN Jianfeng. Can Immunotherapy Cure Cancer? [J]. Journal of Shanghai Jiao Tong University, 2021, 55(Sup.1): 53-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||