Journal of Diagnostics Concepts & Practice ›› 2024, Vol. 23 ›› Issue (05): 509-516.doi: 10.16150/j.1671-2870.2024.05.007
• Original articles • Previous Articles Next Articles
AN Huihui1,2, WU Tao1,2(), LIU Wenhui2, TIAN Sirui2
Received:
2024-08-11
Accepted:
2024-10-08
Online:
2024-10-25
Published:
2025-02-25
Contact:
WU Tao
E-mail:wutaozhen@yeah.net
CLC Number:
AN Huihui, WU Tao, LIU Wenhui, TIAN Sirui. A Mendelian randomized study on the correlation between 91 inflammatory protein levels and the risk of acute myeloid leukemia[J]. Journal of Diagnostics Concepts & Practice, 2024, 23(05): 509-516.
Table 1
Mendelian randomization analysis of circulating inflammatory proteins and risk of acute myeloid leukemia
Exposure | Outcomes | SNPs | IVW | MR-Egger | Weighted median | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SE | OR (95%CI) | P | SE | OR (95%CI) | P | SE | OR (95%CI) | P | |||||
ARTN | AML | 14 | 0.3768 | 0.4583(0.2190-0.9591) | 0.0384 | 0.8732 | 0.3252(0.0587-1.8007) | 0.2226 | 0.5050 | 0.3688(0.1371-0.9922) | 0.0482 | ||
CD6 | AML | 6 | 0.4763 | 3.2693(1.2853-8.3159) | 0.0129 | 1.7673 | 2.4846(0.0778-79.3565) | 0.6337 | 0.5444 | 3.1903(1.0975-9.2740) | 0.0331 | ||
CXCL5 | AML | 11 | 0.2623 | 1.6946(1.0134-2.8336) | 0.0443 | 0.3990 | 1.5728(0.7196-3.4377) | 0.2857 | 0.2694 | 1.7337(1.0224-2.9397) | 0.0411 | ||
IL-15RA | AML | 9 | 0.2037 | 1.5729(1.0550-2.3448) | 0.0262 | 0.3623 | 0.8618(0.4237-1.7531) | 0.6937 | 0.2276 | 1.4059(0.9000-2.1962) | 0.1344 | ||
IL-2RB | AML | 11 | 0.4662 | 0.2347(0.0941-0.5853) | 0.0019 | 0.9384 | 0.5465(0.0869-3.4385) | 0.5357 | 0.6405 | 0.3298(0.0940-1.1573) | 0.0833 | ||
MMP-10 | AML | 11 | 0.2922 | 1.8820(1.0614-3.3371) | 0.0305 | 0.4725 | 1.6175(0.6407-4.0836) | 0.3354 | 0.3657 | 1.7830(0.8707-3.6512) | 0.1138 | ||
SIRT2 | AML | 11 | 0.4136 | 0.3104(0.1380-0.6982) | 0.0047 | 0.8396 | 0.1697(0.0327-0.8798) | 0.0638 | 0.5670 | 0.2611(0.0859-0.7935) | 0.0179 | ||
STAMPB | AML | 10 | 0.5171 | 0.2890(0.1049-0.7961) | 0.0164 | 1.5349 | 0.2560(0.0126-5.1855) | 0.4006 | 0.7170 | 0.2570(0.0630-1.0477) | 0.0581 |
Table 2
Sensitivity analysis results of circulating inflammatory proteins and risk of acute myeloid leukemia
exposure | Outcomes | SNPs | Cochran’s Q test | MR-Egger intercept | MR-Presso | |||||
---|---|---|---|---|---|---|---|---|---|---|
IVW | MR Egger | Egger intercept | P | Global Test RSSobs | P | |||||
ARTN | AML | 14 | 10.7366 | 10.5471 | 0.0349 | 0.6711 | 12.2728 | 0.6667 | ||
CD6 | AML | 6 | 1.4264 | 1.4004 | 0.0242 | 0.8797 | 0.9447 | 0.9447 | ||
CXCL5 | AML | 11 | 12.5723 | 12.4797 | 0.0170 | 0.8019 | 13.4745 | 0.4093 | ||
IL-15RA | AML | 9 | 7.0478 | 3.0151 | 0.1516 | 0.0846 | 16.1052 | 0.4327 | ||
IL-2RB | AML | 11 | 7.7765 | 6.6991 | -0.1012 | 0.3264 | 9.3245 | 0.6887 | ||
MMP-10 | AML | 11 | 10.1907 | 9.9951 | 0.0315 | 0.6845 | 11.2204 | 0.5253 | ||
SIRT2 | AML | 11 | 10.4870 | 9.7401 | 0.0838 | 0.4276 | 12.7845 | 0.4190 | ||
STAMPB | AML | 10 | 8.5948 | 8.5872 | 0.0148 | 0.9350 | 10.8371 | 0.4917 |
[1] | 章新, 郑莹. 2005—2020年中国国家及分省疾病监测点的肿瘤死亡疾病负担数据解读[J]. 诊断学理论与实践, 2024, 23(4):371-377. |
ZHANG X, ZHENG Y. Interpretation of cancer death burden data from disease surveillance sites in China from 2005 to 2020[J]. J Diagn Concepts Pract, 2024, 23(4):371-377. | |
[2] | DE KOUCHKOVSKY I, ABDUL-HAY M. Acute myeloid leukemia: a comprehensive review and 2016 update[J]. Blood Cancer J, 2016, 6(7):e441. |
[3] |
DÖHNER H, ESTEY E H, AMADORI S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet[J]. Blood, 2010, 115(3):453-474.
doi: 10.1182/blood-2009-07-235358 pmid: 19880497 |
[4] |
WHITELEY A E, PRICE T T, CANTELLI G, et al. Leukaemia: a model metastatic disease[J]. Nat Rev Cancer, 2021, 21(7):461-475.
doi: 10.1038/s41568-021-00355-z pmid: 33953370 |
[5] |
DINARELLO C A. Anti-inflammatory agents: present and future[J]. Cell, 2010, 140(6):935-950.
doi: 10.1016/j.cell.2010.02.043 pmid: 20303881 |
[6] |
ZHAO J H, STACEY D, ERIKSSON N, et al. Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets[J]. Nat Immunol, 2023, 24(9):1540-1551.
doi: 10.1038/s41590-023-01588-w pmid: 37563310 |
[7] | ELLEGAST J M, ALEXE G, HAMZE A, et al. Unleas-hing cell-intrinsic inflammation as a strategy to kill aml blasts[J]. Cancer Discov, 2022, 12(7):1760-1781. |
[8] |
BOWDEN J, HOLMES M V. Meta-analysis and Mendelian randomization: a review[J]. Res Synth Methods, 2019, 10(4):486-496.
doi: 10.1002/jrsm.1346 pmid: 30861319 |
[9] |
ZHU M, MA Z, ZHANG X, et al. C-reactive protein and cancer risk: a pan-cancer study of prospective cohort and Mendelian randomization analysis[J]. BMC Med, 2022, 20(1):301.
doi: 10.1186/s12916-022-02506-x pmid: 36117174 |
[10] |
WANG Q, SHI Q, WANG Z, et al. Integrating plasma proteomes with genome-wide association data for causal protein identification in multiple myeloma[J]. BMC Med, 2023, 21(1):377.
doi: 10.1186/s12916-023-03086-0 pmid: 37775746 |
[11] | CHEN J, XU F, RUAN X, et al. Therapeutic targets for inflammatory bowel disease: proteome-wide Mendelian randomization and colocalization analyses[J]. EBioMedicine, 2023,89:104494. |
[12] | KURKI M I, KARJALAINEN J, PALTA P, et al. FinnGen provides genetic insights from a well-phenotyped isolated population[J]. Nature, 2023, 613(7944):508-518. |
[13] |
SEKULA P, DEL GRECO M F, PATTARO C, et al. Mendelian randomization as an approach to assess causality using observational data[J]. J Am Soc Nephrol, 2016, 27(11):3253-3265.
pmid: 27486138 |
[14] | DAVIES N M, HOLMES M V, DAVEY SMITH G. Rea-ding Mendelian randomisation studies: a guide, glossary, and checklist for clinicians[J]. BMJ, 2018,362:k601. |
[15] |
STALEY J R, BLACKSHAW J, KAMAT M A, et al. PhenoScanner: a database of human genotype-phenotype associations[J]. Bioinformatics, 2016, 32(20):3207-3209.
pmid: 27318201 |
[16] |
SEKULA P, DEL GRECO M F, PATTARO C, et al. Mendelian randomization as an approach to assess causality using observational data[J]. J Am Soc Nephrol, 2016, 27(11):3253-3265.
pmid: 27486138 |
[17] |
BOWDEN J, DEL GRECO M F, MINELLI C, et al. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization[J]. Stat Med, 2017, 36(11):1783-1802.
doi: 10.1002/sim.7221 pmid: 28114746 |
[18] |
BURGESS S, THOMPSON S G. Interpreting findings from Mendelian randomization using the MR-Egger method[J]. Eur J Epidemiol, 2017, 32(5):377-389.
doi: 10.1007/s10654-017-0255-x pmid: 28527048 |
[19] |
BOWDEN J, DAVEY SMITH G, HAYCOCK P C, et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator[J]. Genet Epidemiol, 2016, 40(4):304-314.
doi: 10.1002/gepi.21965 pmid: 27061298 |
[20] | HEMANI G, BOWDEN J, DAVEY SMITH G. Evaluating the potential role of pleiotropy in Mendelian randomization studies[J]. Hum Mol Genet, 2018, 27(R2):R195-R208. |
[21] |
VERBANCK M, CHEN CY, NEALE B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases[J]. Nat Genet, 2018, 50(5):693-698.
doi: 10.1038/s41588-018-0099-7 pmid: 29686387 |
[22] | GIL-LIANES J, LUQUE-LUNA M, ALAMON-REIG F, et al. Sweet syndrome: clinical presentation, malignancy association, autoinflammatory disorders and treatment Response in a Cohort of 93 Patients with Long-term Follow-up[J]. Acta Derm Venereol, 2023,103:adv18284. |
[23] | KRISTINSSON S Y, BJÖRKHOLM M, HULTCRANTZ M, et al. Chronic immune stimulation might act as a trigger for the development of acute myeloid leukemia or mye-lodysplastic syndromes[J]. J Clin Oncol, 2011, 29(21):2897-2903. |
[24] |
INOUE T, HIRATSUKA M, OSAKI M, et al. The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation[J]. Cell Cycle, 2007, 6(9):1011-1018.
doi: 10.4161/cc.6.9.4219 pmid: 17457050 |
[25] |
NAKAGAWA T, GUARENTE L. Sirtuins at a glance[J]. J Cell Sci, 2011, 124(Pt 6):833-838.
doi: 10.1242/jcs.081067 pmid: 21378304 |
[26] | RUSSO C, MAUGERI A, DE LUCA L, et al. The SIRT2 pathway is involved in the antiproliferative effect of flavanones in human leukemia monocytic THP-1 cells[J]. Biomedicines, 2022, 10(10):2383. |
[27] | STRZALKA P, KRAWIEC K, JARYCH D, et al. Assessment of SIRT1-SIRT7 and TP53 genes expression in patients with acute myeloid leukemia[J]. Blood, 2023,142:6048. |
[28] | DENG A, NING Q, ZHOU L, et al. SIRT2 is an unfavo-rable prognostic biomarker in patients with acute myeloid leukemia[J]. Sci Rep, 2016,6:27694. |
[29] |
XU H, LI Y, CHEN L, et al. SIRT2 mediates multidrug resistance in acute myelogenous leukemia cells via ERK1/2 signaling pathway[J]. Int J Oncol, 2016, 48(2):613-623.
doi: 10.3892/ijo.2015.3275 pmid: 26647771 |
[30] | LUO Y, ZHAO H, ZHU J, et al. SIRT2 inhibitor SirReal2 enhances anti-tumor effects of PI3K/mTOR inhibitor VS-5584 on acute myeloid leukemia cells[J]. Cancer Med, 2023, 12(18):18901-18917. |
[31] | HEZAM K, JIANG J, SUN F, et al. Artemin promotes oncogenicity, metastasis and drug resistance in cancer cells[J]. Rev Neurosci, 2018, 29(1):93-98. |
[32] | BANERJEE A, WU Z S, QIAN P, et al. ARTEMIN synergizes with TWIST1 to promote metastasis and poor survival outcome in patients with ER negative mammary carcinoma[J]. Breast Cancer Res, 2011, 13(6):R112. |
[33] |
JIANG X, CHEN K, FAN K, et al. Prognostic significance of artemin in gastric cancer and its role in tumorigenesis[J]. Transl Cancer Res, 2020, 9(1):12-20.
doi: 10.21037/tcr.2019.11.13 pmid: 35117153 |
[34] | WANG X H, LIU Y N, TIAN K, et al. Expression and clinical significance of ARTN and MMP-9 in endometrial carcinoma[J]. J Biol Regul Homeost Agents, 2017, 31(4):879-887. |
[35] |
XU H, YANG X, XUAN X, et al. STAMBP promotes lung adenocarcinoma metastasis by regulating the EGFR/MAPK signaling pathway[J]. Neoplasia, 2021, 23(6):607-623.
doi: 10.1016/j.neo.2021.05.011 pmid: 34102455 |
[36] |
YANG Q, YAN D, ZOU C, et al. The deubiquitinating enzyme STAMBP is a newly discovered driver of triple-negative breast cancer progression that maintains RAI14 protein stability[J]. Exp Mol Med, 2022, 54(11):2047-2059.
doi: 10.1038/s12276-022-00890-1 pmid: 36434041 |
[37] | KITTANG A O, SAND K, BRENNER A K, et al. The systemic profile of soluble immune mediators in patients with myelodysplastic syndromes[J]. Int J Mol Sci, 2016, 17(7):1080. |
[38] |
PARDANANI A, FINKE C, LASHO T L, et al. IPSS-independent prognostic value of plasma CXCL10, IL-7 and IL-6 levels in myelodysplastic syndromes[J]. Leukemia, 2012, 26(4):693-699.
doi: 10.1038/leu.2011.251 pmid: 21912394 |
[39] |
BRUSERUD Ø, RYNINGEN A, OLSNES A M, et al. Subclassification of patients with acute myelogenous leukemia based on chemokine responsiveness and constitutive chemokine release by their leukemic cells[J]. Haematologica, 2007, 92(3):332-341.
doi: 10.3324/haematol.10148 pmid: 17339182 |
[40] | CAO H, TADROS V, HIRAMOTO B, et al. Targeting TKI-activated NFKB2-MIF/CXCLs-CXCR2 signaling pathways in FLT3 mutated acute myeloid leukemia reduced blast viability[J]. Biomedicines, 2022, 10(5):1038. |
[41] | SUI S, LI Z, TAN J, et al. Low expression of CD5 and CD6 is associated with poor overall survival for patients with T-cell malignancies[J]. J Oncol, 2022,2022:2787426. |
[42] | STRATMANN S, YONES S A, GARBULOWSKI M, et al. Transcriptomic analysis reveals proinflammatory signatures associated with acute myeloid leukemia progression[J]. Blood Adv, 2022, 6(1):152-164. |
[43] | RAMBALDI B, KIM H T, ARIHARA Y, et al. Phenotypic and functional characterization of the CD6-ALCAM T-cell co-stimulatory pathway after allogeneic cell transplantation[J]. Haematologica, 2022, 107(11):2617-2629. |
[44] |
SOIFFER R J, FAIRCLOUGH D, ROBERTSON M, et al. CD6-depleted allogeneic bone marrow transplantation for acute leukemia in first complete remission[J]. Blood, 1997, 89(8):3039-3047.
pmid: 9108425 |
[45] |
ROWLEY J, MONIE A, HUNG C F, et al. Expression of IL-15RA or an IL-15/IL-15RA fusion on CD8+ T cells modifies adoptively transferred T-cell function in cis[J]. Eur J Immunol, 2009, 39(2):491-506.
doi: 10.1002/eji.200838594 pmid: 19180469 |
[46] | ZHANG Y, ZHUANG Q, WANG F, et al. Co-expression IL-15 receptor alpha with IL-15 reduces toxicity via limi-ting IL-15 systemic exposure during CAR-T immunotherapy[J]. J Transl Med, 2022, 20(1):432. |
[47] |
REIKVAM H, HATFIELD K J, OYAN A M, et al. Primary human acute myelogenous leukemia cells release matrix metalloproteases and their inhibitors: release profile and pharmacological modulation[J]. Eur J Haematol, 2010, 84(3):239-251.
doi: 10.1111/j.1600-0609.2009.01382.x pmid: 19922462 |
[48] |
HATFIELD K J, REIKVAM H, BRUSERUD Ø. The crosstalk between the matrix metalloprotease system and the chemokine network in acute myeloid leukemia[J]. Curr Med Chem, 2010, 17(36):4448-4461.
pmid: 21062258 |
[1] | ZHU Weiwei, LI Qian, WU Fan, ZHAI Zhimin. Gene mutations and their relationship with clinical features in 100 patients with myelodysplastic syndrome [J]. Journal of Diagnostics Concepts & Practice, 2024, 23(03): 305-312. |
[2] | YE Xiangjun, LU Xingguo. Interpretation of the 5th edition of the WHO classification of haematolymphoid tumours on MDS and AML [J]. Journal of Diagnostics Concepts & Practice, 2023, 22(05): 421-428. |
[3] | GAO Yanting, ZHAO Jinyan, WANG Juan, LI Jia, XU Wen, LI Li, LIN Lihui. Analysis of bone marrow lymphocyte subsets in patients with acute myeloid leukemia and its clinical significance [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(04): 407-413. |
[4] | PENG Zhenping, XIANG Xixi, ZHANG Sujiang, LI Jiaming. Chronic neutrophilic leukemia with leukemia-like reaction as the first-onset manifestation: a report of 2 cases and literature review [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(02): 122-128. |
[5] | WANG Shu, ZHANG Yunxiang, SUI Jingni, LU Jing, FAN Huiyong, WANG Chao, CHEN Bing.. Analysis of additional mutation pattern accompanied with CEBPA mutations in patients with the cytogenetically normal acute myeloid leukemia [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(05): 498-503. |
[6] | ZHU Jianyi, LANG Wenjing, CHEN Fangyuan, XU Zhuoran, SHEN Lijing, ZHONG Jihua. Effect of arsenic trioxide on EVI1 gene in regulating hematopoietic transcription factors in vitro [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(01): 42-47. |
[7] | . [J]. Journal of Diagnostics Concepts & Practice, 2011, 10(05): 434-439. |
[8] | . [J]. Journal of Diagnostics Concepts & Practice, 2010, 9(05): 498-502. |
[9] | . [J]. Journal of Diagnostics Concepts & Practice, 2006, 5(05): 401-403. |
[10] | . [J]. Journal of Diagnostics Concepts & Practice, 2004, 3(06): 50-53. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||