Editorial

Biliary tract carcinoma: from clinical classification to molecular classification

Expand

Received date: 2021-01-28

  Online published: 2022-07-27

Cite this article

ZHANG Rui, SU Jingbo, ZHANG Jian, GENG zhimin . Biliary tract carcinoma: from clinical classification to molecular classification[J]. Journal of Surgery Concepts & Practice, 2021 , 26(02) : 97 -102 . DOI: 10.16139/j.1007-9610.2021.02.002

References

[1] Personeni N, Lleo A, Pressiani T, et al. Biliary tract cancers: molecular heterogeneity and new treatment options[J]. Cancers(Basel), 2020, 12(11):3370.
[2] 李茂岚, 刘颖斌. 胆道恶性肿瘤临床研究进展与展望[J]. 中国实用外科杂志, 2020, 40(2):167-170.
[3] Saha SK, Zhu AX, Fuchs CS, et al. Forty-year trends in cholangiocarcinoma incidence in the US: intrahepatic disease on the rise[J]. Oncologist, 2016, 21(5):594-599.
[4] Everhart JE, Ruhl CE. Burden of digestive diseases in the United States Part Ⅲ: liver, biliary tract, and pancreas[J]. Gastroenterology, 2009, 136(4):1134-1144.
[5] Banales JM, Marin JJG, Lamarca A, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and ma-nagement[J]. Nat Rev Gastro Hepat, 2020, 17(9):557-588.
[6] Lamarca A, Barriuso J, Mcnamara MG, et al. Molecular targeted therapies: ready for “prime time” in biliary tract cancer[J]. J Hepatol, 2020, 73(1):170-185.
[7] Kelley RK, Bridgewater J, Gores GJ, et al. Systemic the-rapies for intrahepatic cholangiocarcinoma[J]. J Hepatol, 2020, 72(2):353-363.
[8] 任泰, 李永盛, 耿亚军, 等. 中国2010—2017年胆囊癌治疗模式及预后分析[J]. 中华外科杂志, 2020, 58(9):697-706.
[9] 李秉璐, 吴昕. 国内外有关肝内胆管癌分型分期解读[J]. 中国实用外科杂志, 2020, 40(6):656-660.
[10] Bismuth H, Nakache R, Diamond T. Management strategies in resection for hilar cholangiocarcinoma[J]. Ann Surg, 1992, 215(1):31-38.
[11] Burke EC, Jarnagin WR, Hochwald SN, et al. Hilar cholangiocarcinoma - patterns of spread, the importance of hepatic resection for curative operation, and a presurgical clinical staging system[J]. Ann Surg, 1998, 228(3):385-392.
[12] Deoliveira ML, Schulick RD, Nimura Y, et al. New sta-ging system and a registry for perihilar cholangiocarcinoma[J]. Hepatology, 2011, 53(4):1363-1371.
[13] Sasaki R, Murata S, Oda T, et al. Evaluation of UICC-TNM and JSBS staging systems for surgical patients with extrahepatic cholangiocarcinoma[J]. Langenbecks Arch Surg, 2010, 395(6):615-623.
[14] Gazzaniga GM, Faggioni A, Filauro M. Surgical treatment of proximal bile duct tumors[J]. Int Surg, 1985, 70(1):45-48.
[15] Liver Cancer Study Group of Japan. The general rules for the clinical and pathological study of primary liver cancer[M]. 2th. Japan: Kanehara, 2003:99-100.
[16] Yamasaki S. Intrahepatic cholangiocarcinoma: macroscopic type and stage classification[J]. J Hepatobiliary Pancreat Surg, 2003, 10(4):288-291.
[17] 季林华, 赵刚, 吴志勇. 肝内胆管癌分型分期与治疗[J]. 中华消化外科杂志, 2010, 9(3):193-196.
[18] 张东, 耿智敏, 陈晨, 等. 胆囊癌的临床分型和预后关系初步分析: 多中心回顾性临床研究[J]. 中华外科杂志, 2019, 57(4):258-264.
[19] Sasaki M, Sato Y, Nakanuma Y. Mutational landscape of combined hepatocellular carcinoma and cholangiocarcinoma, and its clinicopathological significance[J]. Histopa-thology, 2017, 70(3):423-434.
[20] Shibata T, Arai Y, Totoki Y. Molecular genomic landscapes of hepatobiliary cancer[J]. Cancer Sci, 2018, 109(5):1282-1291.
[21] Nakamura H, Arai Y, Totoki Y, et al. Genomic spectra of biliary tract cancer[J]. Nat Genet, 2015, 47(9):1003-1010.
[22] Javle M, Bekaii-Saab T, Jain A, et al. Biliary cancer: utility of next-generation sequencing for clinical management[J]. Cancer, 2016, 122(24):3838-3847.
[23] Nepal C, O′rourke CJ, Oliveira DVNP, et al. Genomic perturbations reveal distinct regulatory networks in intrahepatic cholangiocarcinoma[J]. Hepatology, 2018, 68(3):949-963.
[24] Harbeck N, Penault-Llorca F, Cortes J, et al. Breast cancer[J]. Nat Rev Dis Primers, 2019, 5(1):66.
[25] Hoshida Y, Nijman SMB, Kobayashi M, et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma[J]. Cancer Res, 2009, 69(18):7385-7392.
[26] Guinney J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal cancer[J]. Nat Med, 2015, 21(11):1350-1356.
[27] Collisson EA, Sadanandam A, Olson P, et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy[J]. Nat Med, 2011, 17(4):500-503.
[28] Sia D, Hoshida Y, Villanueva A, et al. Integrative molecu-lar analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes[J]. Gastroenterology, 2013, 144(4):829-840.
[29] Rhee H, Ko JE, Chung T, et al. Transcriptomic and histopathological analysis of cholangiolocellular differentia-tion trait in intrahepatic cholangiocarcinoma[J]. Liver Int, 2018, 38(1):113-124.
[30] Ahn KS, O′brien D, Kang YN, et al. Prognostic subclass of intrahepatic cholangiocarcinoma by integrative mole-cular-clinical analysis and potential targeted approach[J]. Hepatol Int, 2019, 13(4):490-500.
[31] Montal R, Sia D, Montironi C, et al. Molecular classification and therapeutic targets in extrahepatic cholangiocarcinoma[J]. J Hepatol, 2020, 73(2):315-327.
[32] Son KH, Ahn CB, Kim HJ, et al. Quantitative proteomic analysis of bile in extrahepatic cholangiocarcinoma patients[J]. J Cancer, 2020, 11(14):4073-4080.
[33] Kotawong K, Chaijaroenkul W, Roytrakul S, et al. Proteomics analysis for identification of potential cell signa-ling pathways and protein targets of actions of atractylodin and beta-eudesmol against cholangiocarcinoma[J]. Asian Pac J Cancer Prev, 2020, 21(3):621-628.
[34] Darby IA, Vuillier-Devillers K, Pinault E, et al. Proteo-mic analysis of differentially expressed proteins in peri-pheral cholangiocarcinoma[J]. Cancer Microenviron, 2010, 4(1):73-91.
[35] Yu WL, Yu GZ, Dong H, et al. Proteomics analysis identified TPI1 as a novel biomarker for predicting recurrence of intrahepatic cholangiocarcinoma[J]. J Gastroenterol, 2020, 55(12):1171-1182.
[36] Chang TT, Ho CH. Plasma proteome atlas for differentia-ting tumor stage and post-surgical prognosis of hepatocellular carcinoma and cholangiocarcinoma[J]. PloS One, 2020, 15(8):e0238251.
[37] Urman JM, Herranz JM, Uriarte I, et al. Pilot multi-omic analysis of human bile from benign and malignant biliary strictures: a machine-learning approach[J]. Cancers(Basel), 2020, 12(6):1644.
[38] Liang Q, Liu H, Zhang TY, et al. Serum metabolomics uncovering specific metabolite signatures of intra- and extrahepatic cholangiocarcinoma[J]. Mol Biosyst, 2016, 12(2):334-340.
[39] 刘立果, 张一鉴, 王许安, 等. 免疫治疗在胆道恶性肿瘤中的应用进展[J]. 中华外科杂志, 2021, 59(2):158-161.
[40] Job S, Rapoud D, Santos AD, et al. Identification of four immune subtypes characterized by distinct composition and functions of tumor microenvironment in intrahepatic cholangiocarcinoma[J]. Hepatology, 2020, 72(3):965-981.
[41] Tamma R, Annese T, Ruggieri S, et al. Inflammatory cells infiltrate and angiogenesis in locally advanced and metastatic cholangiocarcinoma[J]. Eur J Clin Invest, 2019, 49(5):e13087.
[42] Nepal C, Zhu B, O′rourke CJ, et al. Integrative molecular characterization of gallbladder cancer reveals microenvironment-associated subtypes[J]. J Hepatol, 2020, S0168-8278(20):33820-33824.
[43] Jusakul A, Cutcutache I, Yong CH, et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma[J]. Cancer Discov, 2017, 7(10):1116-1135.
Outlines

/