Latest Articles

Please wait a minute...
  • Select all
    |
  • Research article
    Bo Liu, Yudi Zhao, YinFeng Chang, Han Hsiang Tai, Hanyuan Liang, Tsung-Cheng Chen, Shiwei Feng, Tuo-Hung Hou, Chao-Sung Lai
    Chip. 2023, 2(1): 100040-12. https://doi.org/10.1016/j.chip.2023.100040

    Implementing hardware primitives into cryptosystem has become a new trend in electronic community. Memristor, with intrinsic stochastic characteristics including the switching voltages, times and energies, as well as the fluctuations of the resistance state over time, could be a naturally good entropy source for cryptographic key generation. In this study, based on kinetic Monte Carlo Simulation, multiple Artificial Intelligence techniques, as well as kernel density map and time constant analysis, memristive spatiotemporal variability within graphene based conductive bridging RAM (CBRAM) have been synergistically analyzed to verify the inherent randomness of the memristive stochasticity. Moreover, the random number based on hardware primitives passed the Hamming Distance calculation with high randomness and uniqueness, and has been integrated into a Rivest-Shamir-Adleman (RSA) cryptosystem. The security of the holistic cryptosystem relies both the modular arithmetic algorithm and the intrinsic randomness of the hardware primitive (to be more reliable, the random number could be as large as possible, better larger than 2048 bits as NIST suggested). The spatiotemporal-variability-based random number is highly random, physically unpredictable and machine-learning-attack resilient, improving the robustness of the entire cryptosystem.

  • Research article
    Yongqiang Du, Xun Zhu, Xin Hua, Zhengeng Zhao, Xiao Hu, Yi Qian, Xi Xiao, Kejin Wei
    Chip. 2023, 2(1): 100039-6. https://doi.org/10.1016/j.chip.2023.100039

    Silicon-based polarization-encoding quantum key distribution (QKD) has been extensively studied due to its advantageous characteristics of its low cost and robustness. However, given the difficulty of fabricating polarized independent components on the chip, previous studies have only adopted off-chip devices to demodulate the quantum states or perform polarization compensation. In the current work, a fully chip-based decoder for polarization-encoding QKD was proposed. The chip realized a polarization state analyzer and compensated for the BB84 protocol without the requirement of additional hardware, which was based on a polarization-to-path conversion method utilizing a polarization splitter-rotator. The chip was fabricated adopting a standard silicon photonics foundry, which was of a compact design and suitable for mass production. In the experimental stability test, an average quantum bit error rate of 0.59% was achieved through continuous operation for 10 h without any polarization feedback. Furthermore, the chip enabled the automatic compensation of the fiber polarization drift when utilizing the developed feedback algorithm, which was emulated by a random fiber polarization scrambler. Moreover, a finite-key secret rate of 240 bps over a fiber spool of 100 km was achieved in the case of the QKD demonstration. This study marks an important step toward the integrated, practical, and large-scale deployment of QKD systems.

  • Review article
    Luming Wang, Pengcheng Zhang, Zuheng Liu, Zenghui Wang, Rui Yang
    Chip. 2023, 2(1): 100038-15. https://doi.org/10.1016/j.chip.2023.100038

    With increasing challenges towards continued scaling and improvement in performance faced by electronic computing, mechanical computing has started to attract growing interests. Taking advantage of the mechanical degree of freedom in solid state devices, micro/nano-electromechanical systems (MEMS/NEMS) could provide alternative solutions for future computing and memory systems with ultralow power consumption, compatibility with harsh environments, and high reconfigurability. In this review, MEMS/NEMS-enabled memories and logic processors were surveyed, and the prospects and challenges for future on-chip mechanical computing were also analyzed.

  • Research article
    Richard Soref (Life Fellow IEEE), Francesco De Leonardis
    Chip. 2023, 2(2): 100042-10. https://doi.org/10.1016/j.chip.2023.100042

    We present a theoretical investigation, based on the tight-binding Hamiltonian, of efficient electric-field-induced three-waves mixing (EFIM) in an undoped lattice-matched short-period superlattice (SL) that integrates quasi-phase-matched (QPM) SL straight waveguides and SL racetrack resonators on an opto-electronic chip. Periodically reversed DC voltage is applied to electrode segments on each side of the strip waveguide. The spectra of χxxxx(3) and of the linear susceptibility have been simulated as a function of the number of the atomic monolayers for “non-relaxed” heterointerfaces, and by considering all the transitions between valence and conduction bands. The large obtained values ofχxxxx(3) make the (ZnS)3/(Si2)3 short-period SL a good candidate for realizing large effective second-order nonlinearity, enabling future high-performance of the SLOI PICs and OEICs in the 1000-nm and 2000-nm wavelengths ranges. We have made detailed calculations of the efficiency of second-harmonic generation and of the performances of the optical parametric oscillator (OPO). The results indicate that the (ZnS)N/(Si2)M QPM is competitive with present PPLN technologies and is practical for classical and quantum applications.

  • Review article
    Haonan Chang, Jun Zhang
    Chip. 2023, 2(3): 100054-12. https://doi.org/10.1016/j.chip.2023.100054

    Cryogenic electronics refers to the devices and circuits operated at cryogenic temperatures (below 123.15 K), which are made from a variety of materials such as insulators, conductors, semiconductors, superconductors and topological materials. The cryogenic electronics are endowed with some unique advantages that cannot be realized in room temperature, including high computing speed, high power performance and so on. Choosing the appropriate refrigeration technology is critical for achieving the best performance of the cryogenic electronics. In this review, the cryogenic technology was divided into non-optical refrigeration and optical refrigeration, where non-optical refrigeration technologies are relatively conventional refrigeration technologies, while optical refrigeration is an emerging research field for the cooling of the chips. In the current work, the fundamental principles, applications and development prospects of the non-optical refrigeration was introduced, also the research history, fundamental principles, existing problems and application prospects of the optical refrigeration was thoroughly reviewed.

  • Erratum
    Bo Liu, Yudi Zhao, Hanyuan Liang, Shiwei Feng
    Chip. 2023, 2(4): 100076-1. https://doi.org/10.1016/j.chip.2023.100076
  • Review article
    Kai Yang, Chenggong He, Jiming Fang, Xinhui Cui, Haiding Sun, Yansong Yang, Chengjie Zuo
    Chip. 2023, 2(4): 100058-26. https://doi.org/10.1016/j.chip.2023.100058

    This paper provides a comprehensive review of advanced radio frequency (RF) filter technologies available in miniature chip or integrated circuit (IC) form for wireless communication applications. The RF filter technologies were organized according to the timeline of their introduction, in conjunction with each generation of wireless (cellular) communication standards (1G to 5G). This approach enabled a clear explanation of the corresponding invention history, working principles, typical applications and future development trends. The article covered commercially successful acoustic filter technologies, including the widely used surface acoustic wave (SAW) and bulk acoustic wave (BAW) filters, as well as electromagnetic filter technologies based on low-temperature co-fired ceramic (LTCC) and integrated passive device (IPD). Additionally, emerging filter technologies such as IHP-SAW, suspended thin-film lithium niobate (LiNbO3 or LN) resonant devices and hybrid were also discussed. In order to achieve higher performance, smaller form factor and lower cost for the wireless communication industry, it is believed that fundamental breakthroughs in materials and fabrication techniques are necessary for the future development of RF filters.

  • Original article
    Guang Meng, Yuan Wen, Miaomiao Zhang, Yilei Gu, Wei Xiong, Zijun Wang, Shengda Niu
    Carbon Neutrality. 2022, 1(1): 32. https://doi.org/10.1007/s43979-022-00033-5

    In order to mitigate global warming, the international communities actively explore low-carbon and green development methods. According to the Paris Agreement that came into effect in 2016, there will be a global stocktaking plan to carry out every 5 years from 2023 onwards. In September 2020, China proposed a "double carbon" target of carbon peaking before 2030 and carbon neutrality before 2060. Achieving carbon peaking and carbon neutrality goals requires accurate carbon emissions and carbon absorptions. China's existing carbon monitoring methods have insufficient detection accuracy, low spatial resolution, and narrow swath, which are difficult to meet the monitoring requirement of carbon sources and sinks monitoring. In order to meet the needs of carbon stocktaking and support the monitoring and supervision of carbon sources and sinks, it is recommended to make full use of the foundation of the existing satellites, improve the detection technical specifications of carbon sources and sinks monitoring measures, and build a multi-means and comprehensive, LEO-GEO orbit carbon monitoring satellite system to achieve higher precision, higher resolution and multi-dimensional carbon monitoring. On this basis, it is recommended to strengthen international cooperation, improve data sharing policy, actively participate in the development of carbon retrieval algorithm and the setting of international carbon monitoring standards, establish an independent and controllable global carbon monitoring and evaluation system, and contribute China's strength to the global realization of carbon peaking and carbon neutrality.

  • Original article
    Fu-Zhen Zhang, Rui-Na Xu, Ying-Fu He, Xin Fang, Pei-Xue Jiang
    Carbon Neutrality. 2022, 1(1): 31. https://doi.org/10.1007/s43979-022-00031-7

    CO2 capture is a process with a high energy consumption, and its large-scale implementation should be based on comprehensive analysis of its impact on the energy, economy, and environment. The process of injecting CO2 into existing oil fields is a well-known enhanced oil recovery (CO2-EOR) technique. Using CO2 as a working fluid to recover oil can compensate for the energy consumption of the capture and transport processes, increasing the feasibility of CO2 capture while achieving carbon sequestration. In this study, a full-chain CO2 capture, utilization, and storage (CCUS) system based on the post-combustion capture method is deconstructed and coupled. A full-chain energy consumption calculation software is developed, and optimization analysis of the energy consumption system is conducted. The energy budget of the oil displacement utilization is deconstructed, and the advantages of the water alternating gas (WAG) method are clarified from an energy budget point of view. The analysis reveals that the benefits of CO2-EOR are far greater than the energy consumption of other CCUS processes, and CCUS-EOR is a CO2 utilization method with positive energy benefits. Based on the simulation of the effects of N2 and CH4 on the recovery factor, a multi-well combined injection-production method is proposed, and the reasons for increasing profit are analyzed.

  • Editorial
    Changying Zhao
    Carbon Neutrality. 2022, 1(1): 2. https://doi.org/10.1007/s43979-022-00013-9
  • Review
    IUH Imaduwage, Madhavi Hewadikaram
    Molecular Horticulture. 2024, 4(1): 20. https://doi.org/10.1186/s43897-024-00094-3

    The plant genome exhibits a significant amount of transcriptional activity, with most of the resulting transcripts lacking protein-coding potential. Non-coding RNAs play a pivotal role in the development and regulatory processes in plants. Long non-coding RNAs (lncRNAs), which exceed 200 nucleotides, may play a significant role in enhancing plant resilience to various abiotic stresses, such as excessive heat, drought, cold, and salinity. In addition, the exogenous application of chemicals, such as abscisic acid and salicylic acid, can augment plant defense responses against abiotic stress. While how lncRNAs play a role in abiotic stress tolerance is relatively well-studied in model plants, this review provides a comprehensive overview of the current understanding of this function in horticultural crop plants. It also delves into the potential role of lncRNAs in chemical priming of plants in order to acquire abiotic stress tolerance, although many limitations exist in proving lncRNA functionality under such conditions.

  • Letter
    Guiling Liu, Gongfa Shi, Huijun Liu, Nuo Xu, Lijuan Fan, Ling Wang
    Molecular Horticulture. 2024, 4(1): 7. https://doi.org/10.1186/s43897-024-00084-5
  • Research Article
    Feng Zhang, Yingzhen Wang, Yunzhi Lin, Hongtao Wang, Ying Wu, Wangmei Ren, Lihuan Wang, Ying Yang, Pengpeng Zheng, Songhu Wang, Junyang Yue, Yongsheng Liu
    Molecular Horticulture. 2024, 4(1): 4. https://doi.org/10.1186/s43897-024-00083-6

    Actinidia arguta, known as hardy kiwifruit, is a widely cultivated species with distinct botanical characteristics such as small and smooth-fruited, rich in beneficial nutrients, rapid softening and tolerant to extremely low temperatures. It contains the most diverse ploidy types, including diploid, tetraploid, hexaploid, octoploid, and decaploid. Here we report a haplotype-resolved tetraploid genome (A. arguta cv. ‘Longcheng No.2’) containing four haplotypes, each with 40,859, 41,377, 39,833 and 39,222 protein-coding genes. We described the phased genome structure, synteny, and evolutionary analyses to identify and date possible WGD events. Ks calculations for both allelic and paralogous genes pairs throughout the assembled haplotypic individuals showed its tetraploidization is estimated to have formed ~ 1.03 Mya following Ad-α event occurred ~ 18.7 Mya. Detailed annotations of NBS-LRRs or CBFs highlight the importance of genetic variations coming about after polyploidization in underpinning ability of immune responses or environmental adaptability. WGCNA analysis of postharvest quality indicators in combination with transcriptome revealed several transcription factors were involved in regulating ripening kiwi berry texture. Taking together, the assembly of an A. arguta tetraploid genome provides valuable resources in deciphering complex genome structure and facilitating functional genomics studies and genetic improvement for kiwifruit and other crops.

  • ARTICLE
    Zibo Chen, Shaodian Yang, Junhua Huang, Yifan Gu, Weibo Huang, Shaoyong Liu, Zhiqiang Lin, Zhiping Zeng, Yougen Hu, Zimin Chen, Boru Yang, Xuchun Gui
    Nano-Micro Letters. 2024, 16(1): 92. https://doi.org/10.1007/s40820-023-01295-z

    Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference (EMI) shielding, achieving a flexible EMI shielding film, while maintaining a high transmittance remains a significant challenge. Herein, a flexible, transparent, and conductive copper (Cu) metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique. The Cu mesh film shows an ultra-low sheet resistance (0.18 Ω □−1), high transmittance (85.8%@550 nm), and ultra-high figure of merit (> 13,000). It also has satisfactory stretchability and mechanical stability, with a resistance increases of only 1.3% after 1,000 bending cycles. As a stretchable heater (ε > 30%), the saturation temperature of the film can reach over 110 °C within 60 s at 1.00 V applied voltage. Moreover, the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5 μm. As a demonstration, it is used as a transparent window for shielding the wireless communication electromagnetic waves. Therefore, the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications.

  • Review
    Lizhen Lu, Serge Delrot, Zhenchang Liang
    Molecular Horticulture. 2024, 4(1): 22. https://doi.org/10.1186/s43897-024-00100-8

    Most of the carbon found in fruits at harvest is imported by the phloem. Imported carbon provide the material needed for the accumulation of sugars, organic acids, secondary compounds, in addition to the material needed for the synthesis of cell walls. The accumulation of sugars during fruit development influences not only sweetness but also various parameters controlling fruit composition (fruit “quality”). The accumulation of organic acids and sugar in grape berry flesh cells is a key process for berry development and ripening. The present review presents an update of the research on grape berry development, anatomical structure, sugar and acid metabolism, sugar transporters, and regulatory factors.

  • Correction
    Sirong Jiang, Meiling Zou, Chenji Zhang, wanfeng Ma, Chengcai Xia, Zixuan Li, Long Zhao, Qi Liu, Fen Yu, Dongyi Huang, Zhiqiang Xia
    Molecular Horticulture. 2024, 4(1): 23. https://doi.org/10.1186/s43897-024-00098-z

    Michelia alba DC is a highly valuable ornamental plant of the Magnoliaceae family. This evergreen tropical tree commonly grows in Southeast Asia and is adored for its delightful fragrance. Our study assembled the M. alba haplotype genome MC and MM by utilizing Nanopore ultralong reads, Pacbio Hifi long reads and parental second-generation data. Moreover, the first methylation map of Magnoliaceae was constructed based on the methylation site data obtained using Nanopore data. Metabolomic datasets were generated from the flowers of three different species to assess variations in pigment and volatile compound accumulation. Finally, transcriptome data were generated to link genomic, methylation, and morphological patterns to reveal the reasons underlying the differences between M. alba and its parental lines in petal color, flower shape, and fragrance. We found that the AP1 and AP2 genes are crucial in M. alba petal formation, while the 4CL, PAL, and C4H genes control petal color. The data generated in this study serve as a foundation for future physiological and biochemical research on M. alba, facilitate the targeted improvement of M. alba varieties, and offer a theoretical basis for molecular research on Michelia L.

  • Original article
    Hanhan Xie, Yedan Zheng, Mengyue Xue, Yulian Huang, Dawei Qian, Minglei Zhao, Jianguo Li
    Molecular Horticulture. 2024, 4(1): 24. https://doi.org/10.1186/s43897-024-00099-y
  • Research Article
    Dingyu Zhang, Ziwei Zhu, Bing Yang, Xiaofeng Li, Hongmei Zhang, Hongfang Zhu
    Molecular Horticulture. 2024, 4(1): 21. https://doi.org/10.1186/s43897-024-00092-5

    Salicylic acid (SA) is a multi-functional phytohormone, regulating diverse processes of plant growth and development, especially triggering plant immune responses and initiating leaf senescence. However, the early SA signaling events remain elusive in most plant species apart from Arabidopsis, and even less is known about the multi-facet mechanism underlying SA-regulated processes. Here, we report the identification of a novel regulatory module in cucumber, CsNPR1-CsWRKY11, which mediates the regulation of SA-promoted leaf senescence and ROS burst. Our analyses demonstrate that under SA treatment, CsNPR1 recruits CsWRKY11 to bind to the promoter of CsWRKY11 to activate its expression, thus amplifying the primary SA signal. Then, CsWRKY11 cooperates with CsNPR1 to directly regulate the expression of both chlorophyll degradation and ROS biosynthesis related genes, thereby inducing leaf de-greening and ROS burst. Our study provides a solid line of evidence that CsNPR1 and CsWRKY11 constitute a key module in SA signaling pathway in cucumber, and gains an insight into the interconnected regulation of SA-triggered processes.

  • Original Article
    Ruiyuan Zhang, Li Chen, Ting Min, Yu-Tong Mu, Liang Hao, Wen-Quan Tao
    Carbon Neutrality. 2024, 3(1): 14. https://doi.org/10.1007/s43979-024-00089-5

    Improving the performance of proton exchange membrane fuel cells (PEMFCs) requires deep understanding of the reactive transport processes inside the catalyst layers (CLs). In this study, a particle-overlapping model is developed for accurately describing the hierarchical structures and oxygen reactive transport processes in CLs. The analytical solutions derived from this model indicate that carbon particle overlap increases ionomer thickness, reduces specific surface areas of ionomer and carbon, and further intensifies the local oxygen transport resistance (Rother). The relationship between Rother and roughness factor predicted by the model in the range of 800-1600 s m-1 agrees well with the experiments. Then, a multiscale model is developed by coupling the particle-overlapping model with cell-scale models, which is validated by comparing with the polarization curves and local current density distribution obtained in experiments. The relative error of local current density distribution is below 15% in the ohmic polarization region. Finally, the multiscale model is employed to explore effects of CL structural parameters including Pt loading, I/C, ionomer coverage and carbon particle radius on the cell performance as well as the phase-change-induced (PCI) flow and capillary-driven (CD) flow in CL. The result demonstrates that the CL structural parameters have significant effects on the cell performance as well as the PCI and CD flows. Optimizing the CL structure can increase the current density and further enhance the heat-pipe effect within the CL, leading to overall higher PCI and CD rates. The maximum increase of PCI and CD rates can exceed 145%. Besides, the enhanced heat-pipe effect causes the reverse flow regions of PCI and CD near the CL/PEM interface, which can occupy about 30% of the CL. The multiscale model significantly contributes to a deep understanding of reactive transport and multiphase heat transfer processes inside PEMFCs.

    Highlights

    A particle-overlapping model for reactive transport process in catalyst layers.

    A multiscale model coupling particle-overlapping model with cell-scale models.

    The model is rigorously validated from nanoscale to commercial-cell scale.

    Effects of catalyst layer structures on cell performance are evaluated.

    Phase-change-induced and capillary-driven flows in catalyst layers are studied.

  • ARTICLE
    Liuan Li, Shi Fang, Wei Chen, Yueyue Li, Mohammad Fazel Vafadar, Danhao Wang, Yang Kang, Xin Liu, Yuanmin Luo, Kun Liang, Yiping Dang, Lei Zhao, Songrui Zhao, Zongzhi Yin, Haiding Sun
    Nano-Micro Letters. 2024, 16(1): 192. https://doi.org/10.1007/s40820-024-01394-5
    CSCD(7)

    Photosensors with versatile functionalities have emerged as a cornerstone for breakthroughs in the future optoelectronic systems across a wide range of applications. In particular, emerging photoelectrochemical (PEC)-type devices have recently attracted extensive interest in liquid-based biosensing applications due to their natural electrolyte-assisted operating characteristics. Herein, a PEC-type photosensor was carefully designed and constructed by employing gallium nitride (GaN) p-n homojunction semiconductor nanowires on silicon, with the p-GaN segment strategically doped and then decorated with cobalt-nickel oxide (CoNiOx). Essentially, the p-n homojunction configuration with facile p-doping engineering improves carrier separation efficiency and facilitates carrier transfer to the nanowire surface, while CoNiOx decoration further boosts PEC reaction activity and carrier dynamics at the nanowire/electrolyte interface. Consequently, the constructed photosensor achieves a high responsivity of 247.8 mA W−1 while simultaneously exhibiting excellent operating stability. Strikingly, based on the remarkable stability and high responsivity of the device, a glucose sensing system was established with a demonstration of glucose level determination in real human serum. This work offers a feasible and universal approach in the pursuit of high-performance bio-related sensing applications via a rational design of PEC devices in the form of nanostructured architecture with strategic doping engineering.

  • Editorial
    Yingzhen Wang, Yongsheng Liu
    Molecular Horticulture. 2024, 4(1): 19. https://doi.org/10.1186/s43897-024-00096-1
  • Letter
    Geng Zhang, Peipei Liu, Guifang Zhang, Xiaomin Yao, Xinwei Wang, Yueqian Zhang, Jinxing Lin, Yaning Cui, Xiaojuan Li
    Molecular Horticulture. 2024, 4(1): 16. https://doi.org/10.1186/s43897-024-00093-4
  • Editorial
    Tingting Zhao, Quan Sun, Da-Gang Hu
    Molecular Horticulture. 2024, 4(1): 18. https://doi.org/10.1186/s43897-024-00097-0
  • ARTICLE
    Wenhao Zhao, Pengfei Guo, Jiahao Wu, Deyou Lin, Ning Jia, Zhiyu Fang, Chong Liu, Qian Ye, Jijun Zou, Yuanyuan Zhou, Hongqiang Wang
    Nano-Micro Letters. 2024, 16(1): 191. https://doi.org/10.1007/s40820-024-01407-3

    Low-temperature processed electron transport layer (ETL) of TiO2 that is widely used in planar perovskite solar cells (PSCs) has inherent low carrier mobility, resulting in insufficient photogenerated electron transport and thus recombination loss at buried interface. Herein, we demonstrate an effective strategy of laser embedding of p-n homojunctions in the TiO2 ETL to accelerate electron transport in PSCs, through localized build-in electric fields that enables boosted electron mobility by two orders of magnitude. Such embedding is found significantly helpful for not only the enhanced crystallization quality of TiO2 ETL, but the fabrication of perovskite films with larger-grain and the less-trap-states. The embedded p-n homojunction enables also the modulation of interfacial energy level between perovskite layers and ETLs, favoring for the reduced voltage deficit of PSCs. Benefiting from these merits, the formamidinium lead iodide (FAPbI3) PSCs employing such ETLs deliver a champion efficiency of 25.50%, along with much-improved device stability under harsh conditions, i.e., maintain over 95% of their initial efficiency after operation at maximum power point under continuous heat and illumination for 500 h, as well as mixed-cation PSCs with a champion efficiency of 22.02% and over 3000 h of ambient storage under humidity stability of 40%. Present study offers new possibilities of regulating charge transport layers via p-n homojunction embedding for high performance optoelectronics.

  • Review
    Mohammad Alnajideen, Hao Shi, William Northrop, David Emberson, Seamus Kane, Pawel Czyzewski, Mustafa Alnaeli, Syed Mashruk, Kevin Rouwenhorst, Chunkan Yu, Sven Eckart, Agustin Valera-Medina
    Carbon Neutrality. 2024, 3(1): 13. https://doi.org/10.1007/s43979-024-00088-6

    Ammonia is emerging as a viable alternative to fossil fuels in combustion systems, aiding in the reduction of carbon emissions. However, its use faces challenges, including NOx emissions and low flame speed. Innovative approaches and technologies have significantly advanced the development and implementation of ammonia as a zero-carbon fuel. This review explores current advancements in using ammonia as a fuel substitute, highlighting the complexities that various systems need to overcome before reaching full commercial maturity in support of practical decarbonising global strategies. Different from other reviews, this article incorporates insights of various industrial partners currently working towards green ammonia technologies. The work further addresses fundamental complexities of ammonia combustion, crucial for its practical and industrial implementation in various types of equipment.

  • ARTICLE
    Juan Zhang, Xiaofei Ji, Xiaoting Wang, Liujiang Zhang, Leyu Bi, Zhenhuang Su, Xingyu Gao, Wenjun Zhang, Lei Shi, Guoqing Guan, Abuliti Abudula, Xiaogang Hao, Liyou Yang, Qiang Fu, Alex K.-Y. Jen, Linfeng Lu
    Nano-Micro Letters. 2024, 16(1): 190. https://doi.org/10.1007/s40820-024-01408-2
    CSCD(13)

    A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells. The control of forming uniform and large-area film and perovskite crystallization is still the main obstacle restricting the efficiency of PSMs. In this work, we adopted a solid-liquid two-step film formation technique, which involved the evaporation of a lead iodide film and blade coating of an organic ammonium halide solution to prepare perovskite films. This method possesses the advantages of integrating vapor deposition and solution methods, which could apply to substrates with different roughness and avoid using toxic solvents to achieve a more uniform, large-area perovskite film. Furthermore, modification of the NiOx/perovskite buried interface and introduction of Urea additives were utilized to reduce interface recombination and regulate perovskite crystallization. As a result, a large-area perovskite film possessing larger grains, fewer pinholes, and reduced defects could be achieved. The inverted PSM with an active area of 61.56 cm2 (10 × 10 cm2 substrate) achieved a champion power conversion efficiency of 20.56% and significantly improved stability. This method suggests an innovative approach to resolving the uniformity issue associated with large-area film fabrication.

  • ARTICLE
    Jingjing Liu, Biao Shi, Qiaojing Xu, Yucheng Li, Yuxiang Li, Pengfei Liu, Zetong SunLi, Xuejiao Wang, Cong Sun, Wei Han, Diannan Li, Sanlong Wang, Dekun Zhang, Guangwu Li, Xiaona Du, Ying Zhao, Xiaodan Zhang
    Nano-Micro Letters. 2024, 16(1): 189. https://doi.org/10.1007/s40820-024-01406-4

    Monolithic textured perovskite/silicon tandem solar cells (TSCs) are expected to achieve maximum light capture at the lowest cost, potentially exhibiting the best power conversion efficiency. However, it is challenging to fabricate high-quality perovskite films and preferred crystal orientation on commercially textured silicon substrates with micrometer-size pyramids. Here, we introduced a bulky organic molecule (4-fluorobenzylamine hydroiodide (F-PMAI)) as a perovskite additive. It is found that F-PMAI can retard the crystallization process of perovskite film through hydrogen bond interaction between F and FA+ and reduce (111) facet surface energy due to enhanced adsorption energy of F-PMAI on the (111) facet. Besides, the bulky molecular is extruded to the bottom and top of perovskite film after crystal growth, which can passivate interface defects through strong interaction between F-PMA+ and undercoordinated Pb2+/I. As a result, the additive facilitates the formation of large perovskite grains and (111) preferred orientation with a reduced trap-state density, thereby promoting charge carrier transportation, and enhancing device performance and stability. The perovskite/silicon TSCs achieved a champion efficiency of 30.05% based on a silicon thin film tunneling junction. In addition, the devices exhibit excellent long-term thermal and light stability without encapsulation. This work provides an effective strategy for achieving efficient and stable TSCs.

  • REVIEW
    Afsana Sheikh, Prashant Kesharwani, Waleed H. Almalki, Salem Salman Almujri, Linxin Dai, Zhe-Sheng Chen, Amirhossein Sahebkar, Fei Gao
    Nano-Micro Letters. 2024, 16(1): 188. https://doi.org/10.1007/s40820-024-01399-0

    As a new form of regulated cell death, ferroptosis has unraveled the unsolicited theory of intrinsic apoptosis resistance by cancer cells. The molecular mechanism of ferroptosis depends on the induction of oxidative stress through excessive reactive oxygen species accumulation and glutathione depletion to damage the structural integrity of cells. Due to their high loading and structural tunability, nanocarriers can escort the delivery of ferro-therapeutics to the desired site through enhanced permeation or retention effect or by active targeting. This review shed light on the necessity of iron in cancer cell growth and the fascinating features of ferroptosis in regulating the cell cycle and metastasis. Additionally, we discussed the effect of ferroptosis-mediated therapy using nanoplatforms and their chemical basis in overcoming the barriers to cancer therapy.

  • AUTHOR CORRECTION
    Yinyi Ma, Jue Gong, Peng Zeng, Mingzhen Liu
    Nano-Micro Letters. 2024, 16(1): 187. https://doi.org/10.1007/s40820-023-01131-4
  • Original Article
    Lu Wang, Yanan Zhao, Rui Long, Zhichun Liu, Wei Liu
    Carbon Neutrality. 2024, 3(1): 12. https://doi.org/10.1007/s43979-024-00087-7

    Multi-stage reverse electrodialysis (MSRED) offers a promising way for efficient salinity gradient energy harvesting. Here, an improved model of the MSRED system under serial control strategy is proposed. The technical-economic analysis is conducted with considering discount, depreciation and different regional tax and electricity price levels under the maximum net power output conditions. Results reveal that net power output and energy efficiency both increase first with increasing stage numbers, reach their maximum values, and then decrease. For 5 M/0.05 M solutions, the optimal net power output of 4.98 kW is obtained at the stage number n = 12. The optimal stage number corresponding to the maximum net power increases with increasing feed solution concentrations. Due to the compromise between net power generation and capital cost, there exist optimal stage numbers leading to the lowest LCOE and largest NPV, respectively. Higher feed solution concentration can significantly decrease the system LCOE and increase the NPV. The optimal stage number corresponding to the maximum NPV increases with increasing feed solution concentrations. In Germany, for 5 M/0.05 M solutions, the lowest LCOE of 0.061 €·kWh−1 is achieved at n = 3 while the highest NPV over the system lifecycle of 52,005 € is obtained at n = 8. Lower tax, higher electricity price, appropriate membrane price and stage numbers, and high salinity gradient sources can significantly accelerate the commercial completeness of the MSRED systems.