1. |
S.-K. Kang, R.K.J. Murphy, S.-W. Hwang, S.M. Lee et al., Bioresorbable silicon electronic sensors for the brain. Nature 530, 71-76 ( 2016). https://doi.org/10.1038/ncomms3838
|
2. |
J. Koo, M.R. MacEwan, S.-K. Kang, S.M. Won et al., Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat. Med. 24, 1830-1836 ( 2018). https://doi.org/10.1038/s41591-018-0196-2
|
3. |
C.M. Boutry, L. Beker, Y. Kaizawa, C. Vassos et al., Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3, 47-57 ( 2019). https://doi.org/10.1038/s41551-018-0336-5
|
4. |
Y.S. Choi, R.T. Yin, A. Pfenniger, J. Koo et al., Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat. Biotechnol. 39, 1228-1238 ( 2021). https://doi.org/10.1038/s41587-021-00948-x
|
5. |
Y.S. Choi, H. Jeong, R.T. Yin, R. Avila et al., A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy. Science 376, 1006-1012 ( 2022). https://doi.org/10.1126/science.abm1703
|
6. |
S.M. Yang, J.H. Shim, H.-U. Cho, T.-M. Jang et al., Hetero-integration of silicon nanomembranes with 2D materials for bioresorbable, wireless neurochemical system. Adv. Mater. 34, e2108203 ( 2022). https://doi.org/10.1002/adma.202108203
|
7. |
|
8. |
J. Koo, S.B. Kim, Y.S. Choi, Z. Xie et al., Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion. Sci. Adv. 6, eabb1093 ( 2020). https://doi.org/10.1126/sciadv.abb1093
|
9. |
X. Peng, K. Dong, C. Ye, Y. Jiang et al., A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 6, eaba9624 ( 2020). https://doi.org/10.1126/sciadv.aba9624
|
10. |
J.-H. Lee, K. Cho, K. Cho, Emerging trend in soft electronics: integrating machine intelligence with soft acoustic/vibration sensors. Adv. Mater. ( 2023). https://doi.org/10.1002/adma.202209673
|
11. |
W.B. Han, S.-Y. Heo, D. Kim, S.M. Yang et al., Zebra-inspired stretchable, biodegradable radiation modulator for all-day sustainable energy harvesters. Sci. Adv. 9, eadf5883 ( 2023). https://doi.org/10.1126/sciadv.adf5883
|
12. |
|
13. |
G. Li, E. Song, G. Huang, Q. Guo et al., High-temperature-triggered thermally degradable electronics based on flexible silicon nanomembranes. Adv. Funct. Mater. 28, 1801448 ( 2018). https://doi.org/10.1002/adfm.201801448
|
14. |
J.-W. Shin, J. ChanChoe, J.H. Lee, W.B. Han et al., Biologically safe, degradable self-destruction system for on-demand, programmable transient electronics. ACS Nano 15, 19310-19320 ( 2021). https://doi.org/10.1021/acsnano.1c05463
|
15. |
|
16. |
|
17. |
|
18. |
S.-W. Hwang, J.-K. Song, X. Huang, H. Cheng et al., High-performance biodegradable/transient electronics on biodegradable polymers. Adv. Mater. 26, 3905-3911 ( 2014). https://doi.org/10.1002/adma.201306050
|
19. |
H. Tao, S.-W. Hwang, B. Marelli, B. An et al., Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proc. Natl. Acad. Sci. U.S.A. 111, 17385-17389 ( 2014). https://doi.org/10.1073/pnas.1407743111
|
20. |
|
21. |
Y.H. Jung, T.-H. Chang, H. Zhang, C. Yao et al., High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 6, 7170 ( 2015). https://doi.org/10.1038/ncomms8170
|
22. |
|
23. |
S.K. Ghosh, J. Park, S. Na, M.P. Kim et al., A fully biodegradable ferroelectric skin sensor from edible porcine skin gelatine. Adv. Sci. 8, 2005010 ( 2021). https://doi.org/10.1002/advs.202005010
|
24. |
X. Peng, K. Dong, Y. Zhang, L. Wang et al., Sweat-permeable, biodegradable, transparent and self-powered chitosan-based electronic skin with ultrathin elastic gold nanofibers. Adv. Funct. Mater. 32, 2112241 ( 2022). https://doi.org/10.1002/adfm.202112241
|
25. |
M. Baumgartner, F. Hartmann, M. Drack, D. Preninger et al., Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nat. Mater. 19, 1102-1109 ( 2020). https://doi.org/10.1038/s41563-020-0699-3
|
26. |
E.H. Rumley, D. Preninger, A. Shagan Shomron, P. Rothemund et al., Biodegradable electrohydraulic actuators for sustainable soft robots. Sci. Adv. 9, eadf5551 ( 2023). https://doi.org/10.1126/sciadv.adf5551
|
27. |
G.A. Salvatore, J. Sülzle, F. Dalla Valle, G. Cantarella et al., Biodegradable and highly deformable temperature sensors for the internet of things. Adv. Funct. Mater. 27, 1702390 ( 2017). https://doi.org/10.1002/adfm.201702390
|
28. |
C. Hou, Z. Xu, W. Qiu, R. Wu et al., A biodegradable and stretchable protein-based sensor as artificial electronic skin for human motion detection. Small 15, e1805084 ( 2019). https://doi.org/10.1002/smll.201805084
|
29. |
O. Yue, X. Wang, X. Liu, M. Hou et al., Spider-web and ant-tentacle doubly bio-inspired multifunctional self-powered electronic skin with hierarchical nanostructure. Adv. Sci. 8, e2004377 ( 2021). https://doi.org/10.1002/advs.202004377
|
30. |
J. Xu, X. Wei, R. Li, Y. Shi et al., Intelligent self-powered sensor based on triboelectric nanogenerator for take-off status monitoring in the sport of triple-jumping. Nano Res. 15, 6843-6849 ( 2022). https://doi.org/10.1007/s12274-022-4218-5
|
31. |
X. Wei, Y. Wang, B. Tan, E. Zhang et al., Triboelectric nanogenerators stimulated electroacupuncture (EA) treatment for promoting the functional recovery after spinal cord injury. Mater. Today 60, 41-51 ( 2022). https://doi.org/10.1016/j.mattod.2022.09.010
|
32. |
X. Wei, B. Wang, Z. Wu, Z.L. Wang, An open-environment tactile sensing system: toward simple and efficient material identification. Adv. Mater. 34(29), 2203073 ( 2022). https://doi.org/10.1002/adma.202203073
|
33. |
|
34. |
|
35. |
Y.S. Choi, Y.-Y. Hsueh, J. Koo, Q. Yang et al., Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration. Nat. Commun. 11, 5990 ( 2020). https://doi.org/10.1038/s41467-020-19660-6
|
36. |
|
37. |
C.M. Boutry, Y. Kaizawa, B.C. Schroeder, A. Chortos et al., A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 1, 314-321 ( 2018). https://doi.org/10.1038/s41928-018-0071-7
|
38. |
Q. Yang, T. Wei, R.T. Yin, M. Wu et al., Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nat. Mater. 20, 1559-1570 ( 2021). https://doi.org/10.1038/s41563-021-01051-x
|
39. |
U. Sharma, D. Concagh, L. Core, Y. Kuang et al., The development of bioresorbable composite polymeric implants with high mechanical strength. Nat. Mater. 17, 96-103 ( 2018). https://doi.org/10.1038/nmat5016
|
40. |
|
41. |
S.-H. Lee, B.-S. Kim, S.H. Kim, S.W. Choi et al., Elastic biodegradable poly(glycolide- co-caprolactone) scaffold for tissue engineering. J. Biomed. Mater. Res. A 66, 29-37 ( 2003). https://doi.org/10.1002/jbm.a.10497
|
42. |
J.-H. Park, H. Yoon, Y.J. Kwak, C. Wang et al., Feasibility and safety of inserting transient biodegradable stents in the pylorus during pylorus-preserving gastrectomy for gastric cancer: a preliminary study in a porcine for proof of concept. Gastric Cancer 26, 155-166 ( 2023). https://doi.org/10.1007/s10120-022-01350-5
|
43. |
J. Jaworska, R. Smolarczyk, M. Musiał-Kulik, T. Cichoń et al., Electrospun paclitaxel delivery system based on PGCL/PLGA in local therapy combined with brachytherapy. Int. J. Pharm. 602, 120596 ( 2021). https://doi.org/10.1016/j.ijpharm.2021.120596
|
44. |
Q. Cai, J. Bei, S. Wang, Synthesis and properties of ABA-type triblock copolymers of poly(glycolide- co-caprolactone) (A) and poly(ethylene glycol) (B). Polymer 43(13), 3585-3591 ( 2002). https://doi.org/10.1016/S0032-3861(02)00197-0
|
45. |
A. Turek, K. Stoklosa, A. Borecka et al., Designing biodegradable wafers based on poly(L-lactide- co-glycolide) and poly(glycolide- co-ε-caprolactone) for the prolonged and local release of idarubicin for the therapy of glioblastoma multiforme. Pharm. Res.s 37, 90 ( 2020). https://doi.org/10.1007/s11095-020-02810-2
|
46. |
|
47. |
P.K. Samantaray, A. Little, D.M. Haddleton, T. McNally et al., Poly(glycolic acid) (PGA): a versatile building block expanding high performance and sustainable bioplastic applications. Green Chem. 22, 4055-4081 ( 2020). https://doi.org/10.1039/d0gc01394c
|
48. |
S. Li, P. Dobrzynski, J. Kasperczyk, M. Bero et al., Structure-property relationships of copolymers obtained by ring-opening polymerization of glycolide and epsilon-caprolactone. Part 2. Influence of composition and chain microstructure on the hydrolytic degradation. Biomacromol 6, 489-497 ( 2005). https://doi.org/10.1021/bm049458
|
49. |
|
50. |
Y. You, B.-M. Min, S.J. Lee, T.S. Lee et al., In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly(lactide- co-glycolide). J. Appl. Polym. Sci. 95(2), 193-200 ( 2005). https://doi.org/10.1002/app.21116
|
51. |
|
52. |
|
53. |
|
54. |
M. Held, A. Pichler, J. Chabeda, N. Lam et al., Soft electronic platforms combining elastomeric stretchability and biodegradability. Adv. Sustain. Syst. 6, 2100035 ( 2022). https://doi.org/10.1002/adsu.202100035
|
55. |
S. Kim, S. Choi, E. Oh, J. Byun et al., Revisit to three-dimensional percolation theory: Accurate analysis for highly stretchable conductive composite materials. Sci. Rep. 6, 34632 ( 2016). https://doi.org/10.1038/srep34632
|
56. |
|
57. |
Y. Guo, S. Chen, L. Sun, L. Yang et al., Degradable and fully recyclable dynamic thermoset elastomer for 3D-printed wearable electronics. Adv. Funct. Mater. 31, 2009799 ( 2021). https://doi.org/10.1002/adfm.202009799
|
58. |
N.A. Shahrim, Z. Ahmad, A. Wong Azman, Y. Fachmi Buys et al., Mechanisms for doped PEDOT:PSS electrical conductivity improvement. Mater. Adv. 2, 7118-7138 ( 2021). https://doi.org/10.1039/d1ma00290b
|
59. |
H. He, L. Zhang, X. Guan, H. Cheng et al., Biocompatible conductive polymers with high conductivity and high stretchability. ACS Appl. Mater. Interfaces 11, 26185-26193 ( 2019). https://doi.org/10.1021/acsami.9b07325
|
60. |
L. Zhang, K.S. Kumar, H. He, C.J. Cai, X. He et al., Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat. Commun. 11, 4683 ( 2020). https://doi.org/10.1038/s41467-020-18503-8
|
61. |
S. Choi, J. Park, W. Hyun, J. Kim, J. Kim et al., Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano 9, 6626-6633 ( 2015). https://doi.org/10.1021/acsnano.5b02790
|
62. |
R. Zhou, P. Li, Z. Fan, D. Du et al., Stretchable heaters with composites of an intrinsically conductive polymer, reduced graphene oxide and an elastomer for wearable thermotherapy. J. Mater. Chem. C 5, 1544-1551 ( 2017). https://doi.org/10.1039/c6tc04849h
|
63. |
S.E. Naleway, W. Lear, J.J. Kruzic, C.B. Maughan, Mechanical properties of suture materials in general and cutaneous surgery: an update on mechanical properties of suture materials. J. Biomed. Mater. Res. B Appl. Biomater. 103, 735-742 ( 2015). https://doi.org/10.1002/jbm.b.33171
|
64. |
J.-C. Kim, Y.-K. Lee, B.-S. Lim, S.-H. Rhee et al., Comparison of tensile and knot security properties of surgical sutures. J. Mater. Sci. Mater. Med. 18, 2363-2369 ( 2007). https://doi.org/10.1007/s10856-007-3114-6
|
65. |
V. Kalidasan, X. Yang, Z. Xiong, R.R. Li et al., Wirelessly operated bioelectronic sutures for the monitoring of deep surgical wounds. Nat. Biomed. Eng. 5, 1217-1227 ( 2021). https://doi.org/10.1038/s41551-021-00802-0
|
66. |
J. Lee, S.J. Ihle, G.S. Pellegrino, H. Kim et al., Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain. Nat. Electron. 4, 291-301 ( 2021). https://doi.org/10.1038/s41928-021-00557-1
|
67. |
M. Helmedag, D. Heise, R. Eickhoff, K.-M. Kossel et al., Cross-section modified and highly elastic sutures reduce tissue incision and show comparable biocompatibility: in-vitro and in-vivo evaluation of novel thermoplastic urethane surgical threads. J. Biomed. Mater. Res. B Appl. Biomater. 109, 693-702 ( 2021). https://doi.org/10.1002/jbm.b.34734
|
68. |
|
69. |
A. Ghosh, L. Li, L. Xu, R.P. Dash et al., Gastrointestinal-resident, shape-changing microdevices extend drug release in vivo. Sci. Adv. 6(44), eabb4133 ( 2020). https://doi.org/10.1126/sciadv.abb4133
|
70. |
|