1. |
|
2. |
E.D. Pereira, D.L. da Silva, T.F. Paiva, L.L. de Almeida Carvalho, H.V. Rocha, J.C. Pinto, In vitro release and in vivo pharmacokinetics of praziquantel loaded in different polymer particles. Materials 16(9), 3382 ( 2023). https://doi.org/10.3390/ma16093382
|
3. |
|
4. |
D. Yang, D. Liu, H. Deng, J. Zhang, M. Qin et al., Transferrin functionization elevates transcytosis of nanogranules across epithelium by triggering polarity-associated transport flow and positive cellular feedback loop. ACS Nano 13, 5058-5076 ( 2019). https://doi.org/10.1021/acsnano.8b07231
|
5. |
J. Zhang, M. Qin, D. Yang, L. Yuan, X. Zou et al., Nanoprotein interaction atlas reveals the transport pathway of gold nanoparticles across epithelium and its association with Wnt/β-catenin signaling. ACS Nano 15, 17977-17997 ( 2021). https://doi.org/10.1021/acsnano.1c06452
|
6. |
D.O. Lopez-Cantu, X. Wang, H. Carrasco-Magallanes, S. Afewerki, X. Zhang et al., From bench to the clinic: the path to translation of nanotechnology-enabled mRNA SARS-CoV-2 vaccines. Nano-Micro Lett. 14, 41 ( 2022). https://doi.org/10.1007/s40820-021-00771-8
|
7. |
P. Zhang, Y. Xiao, X. Sun, X. Lin, S. Koo et al., Cancer nanomedicine toward clinical translation: obstacles, opportunities, and future prospects. Med 4, 147-167 ( 2023). https://doi.org/10.1016/j.medj.2022.12.001
|
8. |
|
9. |
Y. Cheng, J. Ren, S. Fan, P. Wu, W. Cong et al., Nanoparticulates reduce tumor cell migration through affinity interactions with extracellular migrasomes and retraction fibers. Nanoscale Horiz. 7, 779-789 ( 2022). https://doi.org/10.1039/d2nh00067a
|
10. |
Z. Zhang, J. Ren, W. Dai, H. Zhang, X. Wang et al., Fast and dynamic mapping of the protein Corona on nanoparticle surfaces by photocatalytic proximity labeling. Adv. Mater. 35, e2206636 ( 2023). https://doi.org/10.1002/adma.202206636
|
11. |
|
12. |
A. Babu, N. Amreddy, R. Muralidharan, G. Pathuri, H. Gali et al., Chemodrug delivery using integrin-targeted PLGA-Chitosan nanoparticle for lung cancer therapy. Sci. Rep. 7, 14674 ( 2017). https://doi.org/10.1038/s41598-017-15012-5
|
13. |
M. Cao, R. Cai, L. Zhao, M. Guo, L. Wang et al., Molybdenum derived from nanomaterials incorporates into molybdenum enzymes and affects their activities in vivo. Nat. Nanotechnol. 16, 708-716 ( 2021). https://doi.org/10.1038/s41565-021-00856-w
|
14. |
E. Hinde, K. Thammasiraphop, H.T. Duong, J. Yeow, B. Karagoz et al., Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release. Nat. Nanotechnol. 12, 81-89 ( 2017). https://doi.org/10.1038/nnano.2016.160
|
15. |
T. Hou, T. Wang, W. Mu, R. Yang, S. Liang et al., Nanoparticle-loaded polarized-macrophages for enhanced tumor targeting and cell-chemotherapy. Nano-Micro Lett. 13, 6 ( 2020). https://doi.org/10.1007/s40820-020-00531-0
|
16. |
C.M. Hu, R.H. Fang, K.C. Wang, B.T. Luk, S. Thamphiwatana, D. Dehaini, P. Nguyen, P. Angsantikul, C.H. Wen, A.V. Kroll, C. Carpenter, Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526(7571), 118-121 ( 2015). https://doi.org/10.1038/nature15373
|
17. |
|
18. |
L. Xu, S. Weng, S. Li, K. Wang, Y. Shen et al., Engineering the intestinal lymphatic transport of oral nanoparticles to educate macrophages for cancer combined immunotherapy. ACS Nano 17, 11817-11837 ( 2023). https://doi.org/10.1021/acsnano.3c02985
|
19. |
|
20. |
P. Nair-Gupta, A. Baccarini, N. Tung, F. Seyffer, O. Florey et al., TLR signals induce phagosomal MHC-I delivery from the endosomal recycling compartment to allow cross-presentation. Cell 158, 506-521 ( 2014). https://doi.org/10.1016/j.cell.2014.04.054
|
21. |
|
22. |
|
23. |
H.-W. Rhee, P. Zou, N.D. Udeshi, J.D. Martell, V.K. Mootha et al., Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328-1331 ( 2013). https://doi.org/10.1126/science.1230593
|
24. |
M. Sohda, Y. Misumi, S. Ogata, S. Sakisaka, S. Hirose et al., Trans-Golgi protein p230/golgin-245 is involved in phagophore formation. Biochem. Biophys. Res. Commun. 456, 275-281 ( 2015). https://doi.org/10.1016/j.bbrc.2014.11.071
|
25. |
M. Rubino, M. Miaczynska, R. Lippé, M. Zerial, Selective membrane recruitment of EEA1 suggests a role in directional transport of clathrin-coated vesicles to early endosomes. J. Biol. Chem. 275, 3745-3748 ( 2000). https://doi.org/10.1074/jbc.275.6.3745
|
26. |
F. Demarchi, C. Bertoli, T. Copetti, E.-L. Eskelinen, C. Schneider, Calpain as a novel regulator of autophagosome formation. Autophagy 3, 235-237 ( 2007). https://doi.org/10.4161/auto.3661
|
27. |
C. Gorbea, G. Pratt, V. Ustrell, R. Bell, S. Sahasrabudhe et al., A protein interaction network for Ecm29 links the 26 S proteasome to molecular motors and endosomal components. J. Biol. Chem. 285, 31616-31633 ( 2010). https://doi.org/10.1074/jbc.M110.154120
|
28. |
|
29. |
C.-L. Luo, X.-C. Xu, C.-J. Liu, S. He, J.-R. Chen et al., RBFOX2/GOLIM4 splicing axis activates vesicular transport pathway to promote nasopharyngeal carcinogenesis. Adv. Sci. 8, e2004852 ( 2021). https://doi.org/10.1002/advs.202004852
|
30. |
A.-M. Pauwels, A. Härtlova, J. Peltier, Y. Driege, G. Baudelet et al., Spatiotemporal changes of the phagosomal proteome in dendritic cells in response to LPS stimulation. Mol. Cell. Proteom. 18, 909-922 ( 2019). https://doi.org/10.1074/mcp.RA119.001316
|