1. |
Z. Liang, J. Shen, X. Xu, F. Li, J. Liu et al., Advances in the development of single-atom catalysts for high-energy-density lithium-sulfur batteries. Adv. Mater. 34, 2200102 ( 2022). https://doi.org/10.1002/adma.202200102
|
2. |
T. Liu, H. Hu, X. Ding, H. Yuan, C. Jin et al., 12 years roadmap of the sulfur cathode for lithium sulfur batteries (2009-2020). Energy Storage Mater. 30, 346-366 ( 2020). https://doi.org/10.1016/j.ensm.2020.05.023
|
3. |
X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500-506 ( 2009). https://doi.org/10.1038/nmat2460
|
4. |
M. Barghamadi, A. Kapoor, C. Wen, A review on Li-S batteries as a high efficiency rechargeable lithium battery. J. Electrochem. Soc. 160, A1256-A1263 ( 2013). https://doi.org/10.1149/2.096308jes
|
5. |
W.-G. Lim, S. Kim, C. Jo, J. Lee, A comprehensive review of materials with catalytic effects in Li-S batteries: enhanced redox kinetics. Angew. Chem. Int. Ed. 58, 18746-18757 ( 2019). https://doi.org/10.1002/anie.201902413
|
6. |
|
7. |
|
8. |
|
9. |
L. Zhou, D.L. Danilov, R.-A. Eichel, P.H.L. Notten, Host materials anchoring polysulfides in Li-S batteries reviewed. Adv. Energy Mater. 11, 2001304 ( 2021). https://doi.org/10.1002/aenm.202001304
|
10. |
D. Liu, C. Zhang, G. Zhou, W. Lv, G. Ling et al., Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 5, 1700270 ( 2017). https://doi.org/10.1002/advs.201700270
|
11. |
Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 141, 3977-3985 ( 2019). https://doi.org/10.1021/jacs.8b12973
|
12. |
C. Zhou, M. Chen, C. Dong, H. Wang, C. Shen et al., The continuous efficient conversion and directional deposition of lithium (poly)sulfides enabled by bimetallic site regulation. Nano Energy 98, 107332 ( 2022). https://doi.org/10.1016/j.nanoen.2022.107332
|
13. |
C. Deng, Z. Wang, L. Feng, S. Wang, J. Yu, Electrocatalysis of sulfur and polysulfides in Li-S batteries. J. Mater. Chem. A 8, 19704-19728 ( 2020). https://doi.org/10.1039/D0TA05964A
|
14. |
G. Zhou, H. Tian, Y. Jin, X. Tao, B. Liu et al., Catalytic oxidation of Li 2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. U.S.A. 114, 840-845 ( 2017). https://doi.org/10.1073/pnas.1615837114
|
15. |
|
16. |
X. Song, Y. Qu, L. Zhao, M. Zhao, Monolayer Fe 3GeX 2 (X = S, Se, and Te) as highly efficient electrocatalysts for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 13, 11845-11851 ( 2021). https://doi.org/10.1021/acsami.0c21136
|
17. |
L. Kong, X. Chen, B.-Q. Li, H.-J. Peng, J.-Q. Huang et al., A bifunctional perovskite promoter for polysulfide regulation toward stable lithium-sulfur batteries. Adv. Mater. 30, 1705219 ( 2018). https://doi.org/10.1002/adma.201705219
|
18. |
C. Yao, W. Li, K. Duan, C. Zhu, J. Li et al., Properties of S-functionalized nitrogen-based MXene (Ti 2NS 2) as a hosting material for lithium-sulfur batteries. Nanomaterials 11, 2478 ( 2021). https://doi.org/10.3390/nano11102478
|
19. |
X. Tao, J. Wang, C. Liu, H. Wang, H. Yao et al., Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat. Commun. 7, 11203 ( 2016). https://doi.org/10.1038/ncomms11203
|
20. |
Y. Yan, H. Li, C. Cheng, T. Yan, W. Gao et al., Boosting polysulfide redox conversion of Li-S batteries by one-step-synthesized Co-Mo bimetallic nitride. J. Energy Chem. 61, 336-346 ( 2021). https://doi.org/10.1016/j.jechem.2021.03.041
|
21. |
L. Zhang, Y. Liu, Z. Zhao, P. Jiang, T. Zhang et al., Enhanced polysulfide regulation via porous catalytic V 2O 3/V 8C 7 heterostructures derived from metal-organic frameworks toward high-performance Li-S batteries. ACS Nano 14, 8495-8507 ( 2020). https://doi.org/10.1021/acsnano.0c02762
|
22. |
R. Xiao, T. Yu, S. Yang, K. Chen, Z. Li et al., Electronic structure adjustment of lithium sulfide by a single-atom copper catalyst toward high-rate lithium-sulfur batteries. Energy Storage Mater. 51, 890-899 ( 2022). https://doi.org/10.1016/j.ensm.2022.07.024
|
23. |
F. Shi, J. Yu, C. Chen, S.P. Lau, W. Lv et al., Advances in understanding and regulation of sulfur conversion processes in metal-sulfur batteries. J. Mater. Chem. A 10, 19412-19443 ( 2022). https://doi.org/10.1039/D2TA02217F
|
24. |
Z.L. Xu, S. Lin, N. Onofrio, L. Zhou, F. Shi et al., Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nat. Commun. 9, 4164 ( 2018). https://doi.org/10.1038/s41467-018-06629-9
|
25. |
|
26. |
C.-L. Song, G.-H. Li, Y. Yang, X.-J. Hong, S. Huang et al., 3D catalytic MOF-based nanocomposite as separator coatings for high-performance Li-S battery. Chem. Eng. J. 381, 122701 ( 2020). https://doi.org/10.1016/j.cej.2019.122701
|
27. |
Q. Zhang, P. Li, D. Zhou, Z. Chang, Y. Kuang et al., Superaerophobic ultrathin Ni-Mo alloy nanosheet array from in situ topotactic reduction for hydrogen evolution reaction. Small 13, 201701648 ( 2017). https://doi.org/10.1002/smll.201701648
|
28. |
P. Zeng, C. Liu, X. Zhao, C. Yuan, Y. Chen et al., Enhanced catalytic conversion of polysulfides using bimetallic Co 7Fe 3 for high-performance lithium-sulfur batteries. ACS Nano 14, 11558-11569 ( 2020). https://doi.org/10.1021/acsnano.0c04054
|
29. |
|
30. |
C. Zhang, J.J. Biendicho, T. Zhang, R. Du, J. Li et al., Combined high catalytic activity and efficient polar tubular nanostructure in urchin-like metallic NiCo 2Se 4 for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 29, 1903842 ( 2019). https://doi.org/10.1002/adfm.201903842
|
31. |
M. Liu, L. Wang, K. Zhao, S. Shi, Q. Shao et al., Atomically dispersed metal catalysts for the oxygen reduction reaction: synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 12, 2890-2923 ( 2019). https://doi.org/10.1039/C9EE01722D
|
32. |
G. Liu, W. Wang, P. Zeng, C. Yuan, L. Wang et al., Strengthened d-p orbital hybridization through asymmetric coordination engineering of single-atom catalysts for durable lithium-sulfur batteries. Nano Lett. 22, 6366-6374 ( 2022). https://doi.org/10.1021/acs.nanolett.2c02183
|
33. |
Z. Han, S. Zhao, J. Xiao, X. Zhong, J. Sheng et al., Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li-S batteries. Adv. Mater. Deerfield Beach Fla 33, e2105947 ( 2021). https://doi.org/10.1002/adma.202105947
|
34. |
Y. Liu, S. Ma, L. Liu, J. Koch, M. Rosebrock et al., Nitrogen doping improves the immobilization and catalytic effects of Co 9S 8 in Li-S batteries. Adv. Funct. Mater. 30, 2002462 ( 2020). https://doi.org/10.1002/adfm.202002462
|
35. |
Y. Zhong, K.R. Yang, W. Liu, P. He, V. Batista et al., Mechanistic insights into surface chemical interactions between lithium polysulfides and transition metal oxides. J. Phys. Chem. C 121, 14222-14227 ( 2017). https://doi.org/10.1021/ACS.JPCC.7B04170
|
36. |
|
37. |
Y.C. Jiang, H.M.U. Arshad, H.J. Li, S. Liu, G.R. Li et al., Crystalline multi-metallic compounds as host materials in cathode for lithium-sulfur batteries. Small 17, e2005332 ( 2021). https://doi.org/10.1002/smll.202005332
|
38. |
S. Huang, Z. Wang, Y. Von Lim, Y. Wang, Y. Li et al., Recent advances in heterostructure engineering for lithium-sulfur batteries. Adv. Energy Mater. 11, 2003689 ( 2021). https://doi.org/10.1002/aenm.202003689
|
39. |
|
40. |
M.A. Al-Tahan, Y. Dong, A.E. Shrshr, X. Liu, R. Zhang et al., Enormous-sulfur-content cathode and excellent electrochemical performance of Li-S battery accouched by surface engineering of Ni-doped WS 2@rGO nanohybrid as a modified separator. J. Colloid Interface Sci. 609, 235-248 ( 2022). https://doi.org/10.1016/j.jcis.2021.12.035
|
41. |
L. Shi, H. Fang, X. Yang, J. Xue, C. Li et al., Fe-cation doping in NiSe 2 as an effective method of electronic structure modulation towards high-performance lithium-sulfur batteries. Chemsuschem 14, 1710-1719 ( 2021). https://doi.org/10.1002/cssc.202100216
|
42. |
T. Yang, K. Liu, T. Wu, J. Zhang, X. Zheng et al., Rational valence modulation of bimetallic carbide assisted by defect engineering to enhance polysulfide conversion for lithium-sulfur batteries. J. Mater. Chem. A 8, 18032-18042 ( 2020). https://doi.org/10.1039/D0TA05927G
|
43. |
R. Zhang, Y. Dong, M.A. Al-Tahan, Y. Zhang, R. Wei et al., Insights into the sandwich-like ultrathin Ni-doped MoS 2/rGO hybrid as effective sulfur hosts with excellent adsorption and electrocatalysis effects for lithium-sulfur batteries. J. Energy Chem. 60, 85-94 ( 2021). https://doi.org/10.1016/j.jechem.2021.01.004
|
44. |
H. Zhang, R. Dai, S. Zhu, L. Zhou, Q. Xu et al., Bimetallic nitride modified separator constructs internal electric field for high-performance lithium-sulfur battery. Chem. Eng. J. 429, 132454 ( 2022). https://doi.org/10.1016/j.cej.2021.132454
|
45. |
W. Liu, C. Luo, S. Zhang, B. Zhang, J. Ma et al., Cobalt-doping of molybdenum disulfide for enhanced catalytic polysulfide conversion in lithium-sulfur batteries. ACS Nano 15, 7491-7499 ( 2021). https://doi.org/10.1021/acsnano.1c00896
|
46. |
X. Gao, X. Yang, M. Li, Q. Sun, J. Liang et al., Cobalt-doped SnS 2 with dual active centers of synergistic absorption-catalysis effect for high-S loading Li-S batteries. Adv. Funct. Mater. 29, 1806724 ( 2019). https://doi.org/10.1002/adfm.201806724
|
47. |
B. Wang, L. Wang, D. Ding, Y. Zhai, F. Wang et al., Zinc-assisted cobalt ditelluride polyhedra inducing lattice strain to endow efficient adsorption-catalysis for high-energy lithium-sulfur batteries. Adv. Mater. 34, e2204403 ( 2022). https://doi.org/10.1002/adma.202204403
|
48. |
C. Shang, G. Li, B. Wei, J. Wang, R. Gao et al., Dissolving vanadium into titanium nitride lattice framework for rational polysulfide regulation in Li-S batteries. Adv. Energy Mater. 11, 2003020 ( 2021). https://doi.org/10.1002/aenm.202003020
|
49. |
W. Xiao, Q. He, Y. Zhao, Virtual screening of two-dimensional selenides and transition metal doped SnSe for lithium-sulfur batteries: a first-principles study. Appl. Surf. Sci. 570, 151213 ( 2021). https://doi.org/10.1016/j.apsusc.2021.151213
|
50. |
L. Wang, Z. Hu, X. Wan, W. Hua, H. Li et al., Li 2S 4 anchoring governs the catalytic sulfur reduction on defective SmMn 2O 5 in lithium-sulfur battery. Adv. Energy Mater. 12, 2200340 ( 2022). https://doi.org/10.1002/aenm.202200340
|
51. |
|
52. |
Z. Cheng, Y. Wang, W. Zhang, M. Xu, Boosting polysulfide conversion in lithium-sulfur batteries by cobalt-doped vanadium nitride microflowers. ACS Appl. Energy Mater. 3, 4523-4530 ( 2020). https://doi.org/10.1021/acsaem.0c00205
|
53. |
Y. Wang, R. Zhang, J. Chen, H. Wu, S. Lu et al., Enhancing catalytic activity of titanium oxide in lithium-sulfur batteries by band engineering. Adv. Energy Mater. 9, 1900953 ( 2019). https://doi.org/10.1002/aenm.201900953
|
54. |
J. Shan, W. Wang, B. Zhang, X. Wang, W. Zhou et al., Unraveling the atomic-level manipulation mechanism of Li 2 S redox kinetics via electron-donor doping for designing high-volumetric-energy-density, lean-electrolyte lithium-sulfur batteries. Adv. Sci. 9, e2204192 ( 2022). https://doi.org/10.1002/advs.202204192
|
55. |
L. Chen, Y. Xu, G. Cao, H.M.K. Sari, R. Duan et al., Bifunctional catalytic effect of CoSe 2 for lithium-sulfur batteries: single doping versus dual doping. Adv. Funct. Mater. 32, 2270052 ( 2022). https://doi.org/10.1002/adfm.202270052
|
56. |
T. Feng, T. Zhao, N. Zhang, Y. Duan, L. Li et al., 2D amorphous Mo-doped CoB for bidirectional sulfur catalysis in lithium sulfur batteries. Adv. Funct. Mater. 32, 2202766 ( 2022). https://doi.org/10.1002/adfm.202202766
|
57. |
O. Eroglu, M.S. Kiai, H. Kizil, Performance enhancement of Li-S battery with the anatase nano structured Fe doped TiO 2 as a robust interlayer. J. Alloys Compd. 838, 155607 ( 2020). https://doi.org/10.1016/j.jallcom.2020.155607
|
58. |
W. Wang, Y. Zhao, Y. Zhang, J. Wang, G. Cui et al., Defect-rich multishelled Fe-doped Co 3O 4 hollow microspheres with multiple spatial confinements to facilitate catalytic conversion of polysulfides for high-performance Li-S batteries. ACS Appl. Mater. Interfaces 12, 12763-12773 ( 2020). https://doi.org/10.1021/acsami.9b21853
|
59. |
W. Cui, H. Li, Y. Liu, Q. Cai, J. Zhao, Capture and catalytic conversion of lithium polysulfides by metal-doped MoS 2 monolayers for lithium-sulfur batteries: a computational study. Phys. E Low Dimension. Syst. Nanostruct. 130, 114715 ( 2021). https://doi.org/10.1016/j.physe.2021.114715
|
60. |
H. Pan, X. Huang, X. Yan, L. Liu, L. Xia et al., Metal-doped mesoporous silica as sulfur hosts in lithium-sulfur battery with enhanced conductivity and polysulfide adsorption ability. J. Electroanal. Chem. 832, 361-367 ( 2019). https://doi.org/10.1016/j.jelechem.2018.11.019
|
61. |
T. Feng, T. Zhao, S. Zhu, N. Zhang, Z. Wei et al., Anion-doped cobalt selenide with porous architecture for high-rate and flexible lithium-sulfur batteries. Small Methods 5, e2100649 ( 2021). https://doi.org/10.1002/smtd.202100649
|
62. |
Y. Li, H. Wu, D. Wu, H. Wei, Y. Guo et al., High-density oxygen doping of conductive metal sulfides for better polysulfide trapping and Li 2 S-S 8 redox kinetics in high areal capacity lithium-sulfur batteries. Adv. Sci. 9, e2200840 ( 2022). https://doi.org/10.1002/advs.202200840
|
63. |
M. Wang, L. Fan, X. Sun, B. Guan, B. Jiang et al., Nitrogen-doped CoSe 2 as a bifunctional catalyst for high areal capacity and lean electrolyte of Li-S battery. ACS Energy Lett. 5, 3041-3050 ( 2020). https://doi.org/10.1021/acsenergylett.0c01564
|
64. |
D. Sun, J. Zhou, D. Rao, L. Zhu, S. Niu et al., Regulating the electron filling state of d orbitals in Ta-based compounds for tunable lithium-sulfur chemistry. Sustain. Mater. Technol. 28, e00271 ( 2021). https://doi.org/10.1016/j.susmat.2021.e00271
|
65. |
W. Yao, C. Tian, C. Yang, J. Xu, Y. Meng et al., P-doped NiTe 2 with Te-vacancies in lithium-sulfur batteries prevents shuttling and promotes polysulfide conversion. Adv. Mater. 34, e2106370 ( 2022). https://doi.org/10.1002/adma.202106370
|
66. |
L. Shi, W. Yuan, J. Liu, W. Zhang, S. Hou et al., P-doped NiSe 2 nanorods grown on activated carbon cloths for high-loading lithium-sulfur batteries. J. Alloys Compd. 875, 160045 ( 2021). https://doi.org/10.1016/j.jallcom.2021.160045
|
67. |
F. Liu, N. Wang, C. Shi, J. Sha, L. Ma et al., Phosphorus doping of 3D structural MoS 2 to promote catalytic activity for lithium-sulfur batteries. Chem. Eng. J. 431, 133923 ( 2022). https://doi.org/10.1016/j.cej.2021.133923
|
68. |
J. Liu, Z. Qiao, Q. Xie, D.-L. Peng, R.-J. Xie, Phosphorus-doped metal-organic framework-derived CoS 2 nanoboxes with improved adsorption-catalysis effect for Li-S batteries. ACS Appl. Mater. Interfaces 13, 15226-15236 ( 2021). https://doi.org/10.1021/acsami.1c00494
|
69. |
H. Lin, S. Zhang, T. Zhang, H. Ye, Q. Yao et al., Simultaneous cobalt and phosphorous doping of MoS 2 for improved catalytic performance on polysulfide conversion in lithium-sulfur batteries. Adv. Energy Mater. 9, 1902096 ( 2019). https://doi.org/10.1002/aenm.201902096
|
70. |
S. Hu, M. Yi, H. Wu, T. Wang, X. Ma et al., Ionic-liquid-assisted synthesis of N, F, and B Co-doped CoFe 2O 4-x on multiwalled carbon nanotubes with enriched oxygen vacancies for Li-S batteries. Adv. Funct. Mater. 32, 2111084 ( 2022). https://doi.org/10.1002/adfm.202111084
|
71. |
Z. Shi, Z. Sun, J. Cai, X. Yang, C. Wei et al., Manipulating electrocatalytic Li 2S redox via selective dual-defect engineering for Li-S batteries. Adv. Mater. 33, 2103050 ( 2021). https://doi.org/10.1002/adma.202103050
|
72. |
A. Zhang, Y. Liang, H. Zhang, Z. Geng, J. Zeng, Doping regulation in transition metal compounds for electrocatalysis. Chem. Soc. Rev. 50, 9817-9844 ( 2021). https://doi.org/10.1039/d1cs00330e
|
73. |
C.Y. Zhang, C. Zhang, G.W. Sun, J.L. Pan, L. Gong et al., Spin effect to promote reaction kinetics and overall performance of lithium-sulfur batteries under external magnetic field. Angew. Chem. Int. Ed. 61, e202211570 ( 2022). https://doi.org/10.1002/anie.202211570
|
74. |
C.-C. Lin, T.-R. Liu, S.-R. Lin, K.M. Boopathi, C.-H. Chiang et al., Spin-polarized photocatalytic CO 2 reduction of Mn-doped perovskite nanoplates. J. Am. Chem. Soc. 144, 15718-15726 ( 2022). https://doi.org/10.1021/jacs.2c06060
|
75. |
J. Ran, L. Wang, M. Si, X. Liang, D. Gao, Tailoring spin state of perovskite oxides by fluorine atom doping for efficient oxygen electrocatalysis. Small 19, e2206367 ( 2023). https://doi.org/10.1002/smll.202206367
|
76. |
G. Song, R. Gao, Z. Zhao, Y. Zhang, H. Tan et al., High-spin state Fe(III) doped TiO 2 for electrocatalytic nitrogen fixation induced by surface F modification. Appl. Catal. B Environ. 301, 120809 ( 2022). https://doi.org/10.1016/j.apcatb.2021.120809
|
77. |
S. Liu, B. Zhang, Y. Cao, H. Wang, Y. Zhang et al., Understanding the effect of nickel doping in cobalt spinel oxides on regulating spin state to promote the performance of the oxygen reduction reaction and zinc-air batteries. ACS Energy Lett. 8, 159-168 ( 2023). https://doi.org/10.1021/acsenergylett.2c02457
|
78. |
Y. Li, X. Wang, M. Sun, Z. Zhao, Z. Wang et al., NiCo (oxy)selenide electrocatalysts via anionic regulation for high-performance lithium-sulfur batteries. J. Mater. Chem. A 10, 5410-5419 ( 2022). https://doi.org/10.1039/D1TA10723B
|
79. |
H. Shan, J. Qin, J. Wang, H.M.K. Sari, L. Lei et al., Doping-induced electronic/ionic engineering to optimize the redox kinetics for potassium storage: a case study of Ni-doped CoSe 2. Adv. Sci. 9, e2200341 ( 2022). https://doi.org/10.1002/advs.202200341
|
80. |
S. Li, P. Xu, M.K. Aslam, C. Chen, A. Rashid et al., Propelling polysulfide conversion for high-loading lithium-sulfur batteries through highly sulfiphilic NiCo 2S 4 nanotubes. Energy Storage Mater. 27, 51-60 ( 2020). https://doi.org/10.1016/j.ensm.2020.01.017
|
81. |
Z. Wu, S. Chen, L. Wang, Q. Deng, Z. Zeng et al., Implanting nickel and cobalt phosphide into well-defined carbon nanocages: a synergistic adsorption-electrocatalysis separator mediator for durable high-power Li-S batteries. Energy Storage Mater. 38, 381-388 ( 2021). https://doi.org/10.1016/j.ensm.2021.03.026
|
82. |
J. Duan, Y. Zou, Z. Li, B. Long, Y. Du, Hollow quasi-polyhedron structure of NiCoP with strong constraint sulfur effect for lithium sulfur battery. J. Electroanal. Chem. 847, 113187 ( 2019). https://doi.org/10.1016/j.jelechem.2019.113187
|
83. |
S. Zhao, Y. Li, F. Zhang, J. Guo, Li 4Ti 5O 12 nanowire array as a sulfur host for high performance lithium sulfur battery. J.Alloys Compd. Interdiscip. J. Mater. Sci. Solid-State Chem. Phys. 805, 873-879 ( 2019). https://doi.org/10.1016/j.jallcom.2019.07.145
|
84. |
J. Guo, Y. Huang, S. Zhao, Z. Li, Z. Wang et al., Array-structured double-ion cooperative adsorption sites as multifunctional sulfur hosts for lithium-sulfur batteries with low electrolyte/sulfur ratio. ACS Nano 15, 16322-16334 ( 2021). https://doi.org/10.1021/acsnano.1c05536
|
85. |
S. Maletti, F.S. Podetti, S. Oswald, L. Giebeler, C.A. Barbero et al., LiV 3O 8-based functional separator coating as effective polysulfide mediator for lithium-sulfur batteries. ACS Appl. Energy Mater. 3, 2893-2899 ( 2020). https://doi.org/10.1021/acsaem.9b02502
|
86. |
X. Wang, J. Han, C. Luo, B. Zhang, J. Ma et al., Coordinated adsorption and catalytic conversion of polysulfides enabled by perovskite bimetallic hydroxide nanocages for lithium-sulfur batteries. Small 17, e2101538 ( 2021). https://doi.org/10.1002/smll.202101538
|
87. |
|
88. |
L. Zhang, Z. Chen, N. Dongfang, M. Li, C. Diao et al. Li-S batteries: nickel-cobalt double hydroxide as a multifunctional mediator for ultrahigh‐rate and ultralong‐life Li-S batteries. 8, 1870152 ( 2018). https://doi.org/10.1002/aenm.201870152
|
89. |
T. Li, Y. Li, J. Yang, Y. Deng, M. Wu et al., In situ electrochemical activation derived Li xMoO y nanorods as the multifunctional interlayer for fast kinetics Li-S batteries. Small 17, 2104613 ( 2021). https://doi.org/10.1002/smll.202104613
|
90. |
Z. Shen, M. Cao, Z. Zhang, J. Pu, C. Zhong et al., Efficient Ni 2Co 4P 3 nanowires catalysts enhance ultrahigh-loading lithium-sulfur conversion in a microreactor-like battery. Adv. Funct. Mater. 30, 1906661 ( 2020). https://doi.org/10.1002/adfm.201906661
|
91. |
H. Gao, S. Ning, J. Zou, S. Men, Y. Zhou et al., The electrocatalytic activity of BaTiO 3 nanoparticles towards polysulfides enables high-performance lithium-sulfur batteries. J. Energy Chem. 48, 208-216 ( 2020). https://doi.org/10.1016/j.jechem.2020.01.028
|
92. |
Y. Zhou, H. Shu, Y. Zhou, T. Sun, M. Han et al., Flower-like Bi 4Ti 3O 12/carbon nanotubes as reservoir and promoter of polysulfide for lithium sulfur battery. J. Power. Sources 453, 227896 ( 2020). https://doi.org/10.1016/j.jpowsour.2020.227896
|
93. |
Y. Hu, A. Hu, J. Wang, X. Niu, M. Zhou et al., Strong intermolecular polarization to boost polysulfide conversion kinetics for high-performance lithium-sulfur batteries. J. Mater. Chem. A 9, 9771-9779 ( 2021). https://doi.org/10.1039/D1TA00798J
|
94. |
X.-J. Hong, C.-L. Song, Z.-M. Wu, Z.-H. Li, Y.-P. Cai et al., Sulfophilic and lithophilic sites in bimetal nickel-zinc carbide with fast conversion of polysulfides for high-rate Li-S battery. Chem. Eng. J. 404, 126566 ( 2021). https://doi.org/10.1016/j.cej.2020.126566
|
95. |
L. Zhang, F. Wan, H. Cao, L. Liu, Y. Wang et al., Integration of binary active sites: Co 3V 2O 8 as polysulfide traps and catalysts for lithium-sulfur battery with superior cycling stability. Small 16, 1907153 ( 2020). https://doi.org/10.1002/smll.201907153
|
96. |
D. He, X. Liu, X. Li, P. Lyu, J. Chen et al., Regulating the polysulfide redox kinetics for high-performance lithium-sulfur batteries through highly sulfiphilic FeWO 4 nanorods. Chem. Eng. J. 419, 129509 ( 2021). https://doi.org/10.1016/j.cej.2021.129509
|
97. |
S. Bhoyate, J. Kim, E. Lee, B. Park, E. Lee et al., Mixed phase 2D Mo 0.5W 0.5S 2 alloy as a multi-functional electrocatalyst for a high-performance cathode in Li-S batteries. J. Mater. Chem. A 8, 12436-12445 ( 2020). https://doi.org/10.1039/D0TA04354K
|
98. |
T. Sun, X. Zhao, B. Li, H. Shu, L. Luo et al., NiMoO 4 nanosheets anchored on N-S doped carbon clothes with hierarchical structure as a bidirectional catalyst toward accelerating polysulfides conversion for Li-S battery. Adv. Funct. Mater. 31, 2101285 ( 2021). https://doi.org/10.1002/adfm.202101285
|
99. |
W. Qiu, G. Li, D. Luo, Y. Zhang, Y. Zhao et al., Hierarchical micro-nanoclusters of bimetallic layered hydroxide polyhedrons as advanced sulfur reservoir for high-performance lithium-sulfur batteries. Adv. Sci. 8, 2003400 ( 2021). https://doi.org/10.1002/advs.202003400
|
100. |
C. Zhou, Z. Li, X. Xu, L. Mai, Metal-organic frameworks enable broad strategies for lithium-sulfur batteries. Natl. Sci. Rev. 8, nwab055 ( 2021). https://doi.org/10.1093/nsr/nwab055
|
101. |
Z.-J. Zheng, H. Ye, Z.-P. Guo, Recent progress on pristine metal/covalent-organic frameworks and their composites for lithium-sulfur batteries. Energy Environ. Sci. 14, 1835-1853 ( 2021). https://doi.org/10.1039/D0EE03181J
|
102. |
P. Geng, M. Du, X. Guo, H. Pang, Z. Tian et al., Bimetallic metal-organic framework with high-adsorption capacity toward lithium polysulfides for lithium-sulfur batteries. Energy Environ. Mater. 5, 599-607 ( 2022). https://doi.org/10.1002/eem2.12196
|
103. |
Y. Wang, Z. Deng, J. Huang, H. Li, Z. Li et al., 2D Zr-Fc metal-organic frameworks with highly efficient anchoring and catalytic conversion ability towards polysulfides for advanced Li-S battery. Energy Storage Mater. 36, 466-477 ( 2021). https://doi.org/10.1016/j.ensm.2021.01.025
|
104. |
R. Meng, Q. Du, N. Zhong, X. Zhou, S. Liu et al., A tandem electrocatalysis of sulfur reduction by bimetal 2D MOFs. Adv. Energy Mater. 11, 2102819 ( 2021). https://doi.org/10.1002/aenm.202102819
|
105. |
P. Feng, W. Hou, Z. Bai, Y. Bai, K. Sun et al., Ultrathin two-dimensional bimetal NiCo-based MOF nanosheets as ultralight interlayer in lithium-sulfur batteries. Chin. Chem. Lett. 34, 107427 ( 2023). https://doi.org/10.1016/j.cclet.2022.04.025
|
106. |
W. Li, X. Guo, P. Geng, M. Du, Q. Jing et al., Rational design and general synthesis of multimetallic metal-organic framework nano-octahedra for enhanced Li-S battery. Adv. Mater. 33, e2105163 ( 2021). https://doi.org/10.1002/adma.202105163
|
107. |
C. Zha, D. Wu, Y. Zhao, J. Deng, J. Wu et al., Two-dimensional multimetallic sulfide nanosheets with multi-active sites to enhance polysulfide redox reactions in liquid Li 2S6-based lithium-polysulfide batteries. J. Energy Chem. 52, 163-169 ( 2021). https://doi.org/10.1016/j.jechem.2020.04.059
|
108. |
A. Amiri, R. Shahbazian-Yassar, Recent progress of high-entropy materials for energy storage and conversion. J. Mater. Chem. A 9, 782-823 ( 2021). https://doi.org/10.1039/D0TA09578H
|
109. |
M.J. Theibault, C.R. McCormick, S. Lang, R.E. Schaak, H.D. Abruña, High entropy sulfide nanoparticles as lithium polysulfide redox catalysts. ACS Nano 17, 18402-18410 ( 2023). https://doi.org/10.1021/acsnano.3c05869
|
110. |
Y. Zheng, Y. Yi, M. Fan, H. Liu, X. Li et al., A high-entropy metal oxide as chemical anchor of polysulfide for lithium-sulfur batteries. Energy Storage Mater. 23, 678-683 ( 2019). https://doi.org/10.1016/j.ensm.2019.02.030
|
111. |
B. Fang, X. Tian, T. Wang, T. Wang, L. Qu et al., Restraining polysulfide with high-entropy metal nitride towards long cycle life and high capacity Li-S batteries. ChemElectroChem 7, 4737-4744 ( 2020). https://doi.org/10.1002/celc.202001215
|
112. |
L. Tian, Z. Zhang, S. Liu, G. Li, X. Gao, High-entropy spinel oxide nanofibers as catalytic sulfur hosts promise the high gravimetric and volumetric capacities for lithium-sulfur batteries. Energy Environ. Mater. 5, 645-654 ( 2022). https://doi.org/10.1002/eem2.12215
|
113. |
M. Du, X. Wang, P. Geng, Q. Li, Y. Gu et al., Polypyrrole-enveloped Prussian blue nanocubes with multi-metal synergistic adsorption toward lithium polysulfides: high-performance lithium-sulfur batteries. Chem. Eng. J. 420, 130518 ( 2021). https://doi.org/10.1016/j.cej.2021.130518
|
114. |
M. Du, P. Geng, C. Pei, X. Jiang, Y. Shan et al., High-entropy Prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries. Angew. Chem. Int. Ed. 61, e202209350 ( 2022). https://doi.org/10.1002/anie.202209350
|
115. |
H. Xu, R. Hu, Y. Zhang, H. Yan, Q. Zhu et al., Nano high-entropy alloy with strong affinity driving fast polysulfide conversion towards stable lithium sulfur batteries. Energy Storage Mater. 43, 212-220 ( 2021). https://doi.org/10.1016/j.ensm.2021.09.003
|
116. |
Q. Wang, A. Sarkar, D. Wang, L. Velasco, R. Azmi et al., Multi-anionic and-cationic compounds: new high entropy materials for advanced Li-ion batteries. Energy Environ. Sci. 12, 2433-2442 ( 2019). https://doi.org/10.1039/C9EE00368A
|
117. |
T. Wang, H. Chen, Z. Yang, J. Liang, S. Dai, High-entropy perovskite fluorides: a new platform for oxygen evolution catalysis. J. Am. Chem. Soc. 142, 4550-4554 ( 2020). https://doi.org/10.1021/jacs.9b12377
|
118. |
|
119. |
L. Chen, Z. Chen, X. Yao, B. Su, W. Chen, et al. High-entropy alloy catalysts: high-throughput and machine learning-driven design. J. Mater. Inform. 2, 19 ( 2022). https://doi.org/10.20517/jmi.2022.23
|
120. |
Z.W. Chen, Z. Gariepy, L. Chen, X. Yao, A. Anand et al., Machine-learning-driven high-entropy alloy catalyst discovery to circumvent the scaling relation for CO 2 reduction reaction. ACS Catal. 12, 14864-14871 ( 2022). https://doi.org/10.1021/acscatal.2c03675
|
121. |
X. Wan, Z. Zhang, W. Yu, H. Niu, X. Wang et al., Machine-learning-assisted discovery of highly efficient high-entropy alloy catalysts for the oxygen reduction reaction. Patterns 3, 100553 (2022)
|
122. |
Y. Men, D. Wu, Y. Hu, L. Li, P. Li et al., Understanding alkaline hydrogen oxidation reaction on PdNiRuIrRh high-entropy-alloy by machine learning potential. Angew. Chem. Int. Ed. 62, e202217976 ( 2023). https://doi.org/10.1002/anie.202217976
|
123. |
Y. Feng, M. Xu, T. He, B. Chen, F. Gu et al., CoPSe: a new ternary anode material for stable and high-rate sodium/potassium-ion batteries. Adv. Mater. 33, e2007262 ( 2021). https://doi.org/10.1002/adma.202007262
|
124. |
H. Li, R. Gao, B. Chen, C. Zhou, F. Shao et al., Vacancy-rich MoSSe with sulfiphilicity-lithiophilicity dual function for kinetics-enhanced and dendrite-free Li-S batteries. Nano Lett. 22, 4999-5008 ( 2022). https://doi.org/10.1021/acs.nanolett.2c01779
|
125. |
M. Cheng, Z. Xing, R. Yan, Z. Zhao, T. Ma et al., Oxygen-modulated metal nitride clusters with moderate binding ability to insoluble Li 2S x for reversible polysulfide electrocatalysis. InfoMat 5, e12387 ( 2023). https://doi.org/10.1002/inf2.12387
|
126. |
L. Sun, K. Li, J. Fu, B. Tian, C. Wang et al., Cerium oxysulfide with O-Ce-S bindings for efficient adsorption and conversion of lithium polysulfide in Li-S batteries. Inorg. Chem. 60, 12847-12854 ( 2021). https://doi.org/10.1021/acs.inorgchem.1c01184
|
127. |
X. Wu, N. Liu, M. Wang, Y. Qiu, B. Guan et al., A class of catalysts of BiOX (X = Cl, Br, I) for anchoring polysulfides and accelerating redox reaction in lithium sulfur batteries. ACS Nano 13, 13109-13115 ( 2019). https://doi.org/10.1021/acsnano.9b05908
|
128. |
D. Wang, G. Du, Y. Wang, Y. Fan, D. Han et al., BiOI nanosheets-wrapped carbon fibers as efficient electrocatalyst for bidirectional polysulfide conversion in Li-S batteries. Chem. Eng. J. 430, 133015 ( 2022). https://doi.org/10.1016/j.cej.2021.133015
|
129. |
D. Wang, F. Li, R. Lian, J. Xu, D. Kan et al., A general atomic surface modification strategy for improving anchoring and electrocatalysis behavior of Ti 3C 2T 2 MXene in lithium-sulfur batteries. ACS Nano 13, 11078-11086 ( 2019). https://doi.org/10.1021/acsnano.9b03412
|
130. |
X.-S. Chen, Y. Gao, G.-R. Zhu, H.-J. Chen, S.-C. Chen et al., Multifunctional interlayer with simultaneously capturing and catalytically converting polysulfides for boosting safety and performance of lithium-sulfur batteries at high-low temperatures. J. Energy Chem. 50, 248-259 ( 2020). https://doi.org/10.1016/j.jechem.2020.03.041
|
131. |
J. Lu, Z. Wang, Y. Guo, Z. Jin, G. Cao et al., Ultrathin nanosheets of FeOOH with oxygen vacancies as efficient polysulfide electrocatalyst for advanced lithium-sulfur batteries. Energy Storage Mater. 47, 561-568 ( 2022). https://doi.org/10.1016/j.ensm.2022.02.008
|
132. |
Y. Zhang, Y. Yang, C. Huang, J. Wang, X. Liu et al., Sulfur cathodes based on dual-functional GMs-MnOOH for high performance lithium sulfur batteries. Mater. Today Commun. 29, 102857 ( 2021). https://doi.org/10.1016/j.mtcomm.2021.102857
|
133. |
Y. Zuo, Y. Zhu, R. Wan, W. Su, Y. Fan et al., The Electrocatalyst based on LiVPO4F/CNT to enhance the electrochemical kinetics for high performance Li-S batteries. Chem. Eng. J. 415, 129053 ( 2021). https://doi.org/10.1016/j.cej.2021.129053
|
134. |
N. Li, T. Meng, L. Ma, H. Zhang, J. Yao et al., Curtailing carbon usage with addition of functionalized NiFe 2O 4 quantum dots: toward more practical S cathodes for Li-S cells. Nano-Micro Lett. 12, 145 ( 2020). https://doi.org/10.1007/s40820-020-00484-4
|
135. |
J. Pu, M. Han, T. Wang, X. Zhu, M. Lu et al., The enhanced confinement effect of double shell hollow mesoporous spheres assembled with nitrogen-doped copper cobaltate nanoparticles for enhancing lithium-sulfur batteries. Electrochim. Acta 404, 139597 ( 2022). https://doi.org/10.1016/j.electacta.2021.139597
|
136. |
Q. Hao, G. Cui, Y. Zhang, J. Li, Z. Zhang, Novel MoSe 2/MoO 2 heterostructure as an effective sulfur host for high-performance lithium/sulfur batteries. Chem. Eng. J. 381, 122672 ( 2020). https://doi.org/10.1016/j.cej.2019.122672
|
137. |
Z. Shen, Q. Zhou, H. Yu, J. Tian, M. Shi et al., CoSe 2/MoS 2 heterostructures to couple polysulfide adsorption and catalysis in lithium-sulfur batteries. Chin. J. Chem. 39, 1138-1144 ( 2021). https://doi.org/10.1002/cjoc.202000661
|
138. |
J. Liu, C. Hu, H. Li, N. Baikalov, Z. Bakenov et al., Novel Ni/Ni 2P@C hollow heterostructure microsphere as efficient sulfur hosts for high-performance lithium-sulfur batteries. J. Alloys Compd. 871, 159576 ( 2021). https://doi.org/10.1016/j.jallcom.2021.159576
|
139. |
Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Self-assembly of 0D-2D heterostructure electrocatalyst from MOF and MXene for boosted lithium polysulfide conversion reaction. Adv. Mater. 33, e2101204 ( 2021). https://doi.org/10.1002/adma.202101204
|
140. |
J.-L. Yang, S.-X. Zhao, Y.-M. Lu, X.-T. Zeng, W. Lv et al., In-situ topochemical nitridation derivative MoO 2-Mo 2N binary nanobelts as multifunctional interlayer for fast-kinetic Li-Sulfur batteries. Nano Energy 68, 104356 ( 2020). https://doi.org/10.1016/j.nanoen.2019.104356
|
141. |
S. Wang, S. Feng, J. Liang, Q. Su, F. Zhao et al., Insight into MoS 2-MoN heterostructure to accelerate polysulfide conversion toward high-energy-density lithium-sulfur batteries. Adv. Energy Mater. 11, 2003314 ( 2021). https://doi.org/10.1002/aenm.202003314
|
142. |
H. Shi, J. Qin, P. Lu, C. Dong, J. He et al., Interfacial engineering of bifunctional niobium (V)-based heterostructure nanosheet toward high efficiency lean-electrolyte lithium-sulfur full batteries. Adv. Funct. Mater. 31, 2102314 ( 2021). https://doi.org/10.1002/adfm.202102314
|
143. |
J. Li, Z. Xiong, Y. Sun, F. Li, Y. Feng et al., Balanced capture and catalytic ability toward polysulfides by designing MoO 2-Co 2Mo 3O 8 heterostructures for lithium-sulfur batteries. Nanoscale 13, 15689-15698 ( 2021). https://doi.org/10.1039/d1nr04506g
|
144. |
B. Zhang, C. Luo, Y. Deng, Z. Huang, G. Zhou et al., Optimized catalytic WS 2-WO 3 heterostructure design for accelerated polysulfide conversion in lithium-sulfur batteries. Adv. Energy Mater. 10, 2000091 ( 2020). https://doi.org/10.1002/aenm.202000091
|
145. |
J. Li, W. Xie, S. Zhang, S.-M. Xu, M. Shao, Boosting the rate performance of Li-S batteries under high mass-loading of sulfur based on a hierarchical NCNT@Co-CoP nanowire integrated electrode. J. Mater. Chem. A 9, 11151-11159 ( 2021). https://doi.org/10.1039/D1TA00959A
|
146. |
T.T. Nguyen, J. Balamurugan, H.W. Go, Q.P. Ngo, N.H. Kim et al., Dual-functional Co 5.47N/Fe 3N heterostructure interconnected 3D N-doped carbon nanotube-graphene hybrids for accelerating polysulfide conversion in Li-S batteries. Chem. Eng. J. 427, 131774 ( 2022). https://doi.org/10.1016/j.cej.2021.131774
|
147. |
W. Yang, Y. Wei, Q. Chen, S. Qin, J. Zuo et al., A MoO 3/MoO 2-CP self-supporting heterostructure for modification of lithium-sulfur batteries. J. Mater. Chem. A 8, 15816-15821 ( 2020). https://doi.org/10.1039/d0ta01664k
|
148. |
D.-Q. Cai, J.-L. Yang, T. Liu, S.-X. Zhao, G. Cao, Interfaces-dominated Li 2S nucleation behavior enabled by heterostructure catalyst for fast kinetics Li-S batteries. Nano Energy 89, 106452 ( 2021). https://doi.org/10.1016/j.nanoen.2021.106452
|
149. |
J.-L. Yang, D.-Q. Cai, X.-G. Hao, L. Huang, Q. Lin et al., Rich heterointerfaces enabling rapid polysulfides conversion and regulated Li 2S deposition for high-performance lithium-sulfur batteries. ACS Nano 15, 11491-11500 ( 2021). https://doi.org/10.1021/acsnano.1c01250
|
150. |
|
151. |
Z. Ye, Y. Jiang, T. Yang, L. Li, F. Wu et al., Engineering catalytic CoSe-ZnSe heterojunctions anchored on graphene aerogels for bidirectional sulfur conversion reactions. Adv. Sci. 9, e2103456 ( 2022). https://doi.org/10.1002/advs.202103456
|
152. |
W. Yao, W. Zheng, J. Xu, C. Tian, K. Han et al., ZnS-SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium-sulfur batteries. ACS Nano 15, 7114-7130 ( 2021). https://doi.org/10.1021/acsnano.1c00270
|
153. |
S. Chen, J. Luo, N. Li, X. Han, J. Wang et al., Multifunctional LDH/Co9S8 heterostructure nanocages as high-performance lithium-sulfur battery cathodes with ultralong lifespan. Energy Storage Mater. 30, 187-195 ( 2020). https://doi.org/10.1016/j.ensm.2020.05.002
|
154. |
W. Li, Z. Gong, X. Yan, D. Wang, J. Liu et al., In situ engineered ZnS-FeS heterostructures in N-doped carbon nanocages accelerating polysulfide redox kinetics for lithium sulfur batteries. J. Mater. Chem. A 8, 433-442 ( 2020). https://doi.org/10.1039/C9TA11451C
|
155. |
T. Zhou, W. Lv, J. Li, G. Zhou, Y. Zhao et al., Twinborn TiO 2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 10, 1694-1703 ( 2017). https://doi.org/10.1039/C7EE01430A
|
156. |
B. Guan, X. Sun, Y. Zhang, X. Wu, Y. Qiu et al., The discovery of interfacial electronic interaction within cobalt boride@MXene for high performance lithium-sulfur batteries. Chin. Chem. Lett. 32, 2249-2253 ( 2021). https://doi.org/10.1016/j.cclet.2020.12.051
|
157. |
C. Zhang, R. Du, J.J. Biendicho, M. Yi, K. Xiao et al., Tubular CoFeP@CN as a mott-schottky catalyst with multiple adsorption sites for robust lithium-sulfur batteries. Adv. Energy Mater. 11, 2100432 ( 2021). https://doi.org/10.1002/aenm.202100432
|
158. |
Y. Wang, R. Zhang, Z. Sun, H. Wu, S. Lu et al., Spontaneously formed mott-schottky electrocatalyst for lithium-sulfur batteries. Adv. Mater. Interfaces 7, 1902092 ( 2020). https://doi.org/10.1002/admi.201902092
|
159. |
C. Ye, Y. Jiao, H. Jin, A.D. Slattery, K. Davey et al., 2D MoN-VN heterostructure to regulate polysulfides for highly efficient lithium-sulfur batteries. Angew. Chem. Int. Ed. 57, 16703-16707 ( 2018). https://doi.org/10.1002/anie.201810579
|
160. |
K. Cai, T. Wang, Z. Wang, J. Wang, L. Li et al., A cocklebur-like sulfur host with the TiO 2-VO x heterostructure efficiently implementing one-step adsorption-diffusion-conversion towards long-life Li-S batteries. Compos. Part B Eng. 249, 110410 ( 2023). https://doi.org/10.1016/j.compositesb.2022.110410
|
161. |
Y. Li, T. Jiang, H. Yang, D. Lei, X. Deng et al., A heterostuctured Co 3S 4/MnS nanotube array as a catalytic sulfur host for lithium-sulfur batteries. Electrochim. Acta 330, 135311 ( 2020). https://doi.org/10.1016/j.electacta.2019.135311
|
162. |
L. Wu, J. Hu, X. Yang, Z. Liang, S. Chen et al., Synergistic effect of adsorption and electrocatalysis of CoO/NiO heterostructure nanosheet assembled nanocages for high-performance lithium-sulfur batteries. J. Mater. Chem. A 10, 23811-23822 ( 2022). https://doi.org/10.1039/D2TA06876A
|
163. |
|
164. |
R. Wang, C. Luo, T. Wang, G. Zhou, Y. Deng et al., Bidirectional catalysts for liquid-solid redox conversion in lithium-sulfur batteries. Adv. Mater. 32, e2000315 ( 2020). https://doi.org/10.1002/adma.202000315
|
165. |
Y. Yao, H. Wang, H. Yang, S. Zeng, R. Xu et al., A dual-functional conductive framework embedded with TiN-VN heterostructures for highly efficient polysulfide and lithium regulation toward stable Li-S full batteries. Adv. Mater. 32, e1905658 ( 2020). https://doi.org/10.1002/adma.201905658
|
166. |
J. Cai, J. Jin, Z. Fan, C. Li, Z. Shi et al., 3D printing of a V 8C 7-VO 2 bifunctional scaffold as an effective polysulfide immobilizer and lithium stabilizer for Li-S batteries. Adv. Mater. 32, 2005967 ( 2020). https://doi.org/10.1002/adma.202005967
|
167. |
Z. Jin, Z. Liang, M. Zhao, Q. Zhang, B. Liu et al., Rational design of MoNi sulfide yolk-shell heterostructure nanospheres as the efficient sulfur hosts for high-performance lithium-sulfur batteries. Chem. Eng. J. 394, 124983 ( 2020). https://doi.org/10.1016/j.cej.2020.124983
|
168. |
K. Guo, G. Qu, J. Li, H. Xia, W. Yan et al., Polysulfides shuttling remedies by interface-catalytic effect of Mn 3O 4-MnP x heterostructure. Energy Storage Mater. 36, 496-503 ( 2021). https://doi.org/10.1016/j.ensm.2021.01.021
|
169. |
Z. Xu, Z. Wang, M. Wang, H. Cui, Y. Liu et al., Large-scale synthesis of Fe9S10/Fe 3O 4@C heterostructure as integrated trapping-catalyzing interlayer for highly efficient lithium-sulfur batteries. Chem. Eng. J. 422, 130049 ( 2021). https://doi.org/10.1016/j.cej.2021.130049
|
170. |
R. Meng, Q. Deng, C. Peng, B. Chen, K. Liao et al., Two-dimensional organic-inorganic heterostructures of in situ-grown layered COF on Ti 3C 2 MXene nanosheets for lithium-sulfur batteries. Nano Today 35, 100991 ( 2020). https://doi.org/10.1016/j.nantod.2020.100991
|
171. |
Y. Liu, D. Hong, M. Chen, Z. Su, Y. Gao et al., Pt-NbC composite as a bifunctional catalyst for redox transformation of polysulfides in high-rate-performing lithium-sulfur batteries. ACS Appl. Mater. Interfaces 13, 35008-35018 ( 2021). https://doi.org/10.1021/acsami.1c10228
|
172. |
Y. Liu, D. Hong, M. Chen, Z. Su, Y. Gao et al., Synergistic action of Pt and Nb 2O 5 ultrafine nanoparticles for bidirectional conversion of polysulfides in high-performance lithium-sulfur cells. Chem. Eng. J. 430, 132714 ( 2022). https://doi.org/10.1016/j.cej.2021.132714
|
173. |
X. Zhou, L. Li, J. Yang, L. Xu, J. Tang, Cobalt and molybdenum carbide nanoparticles grafted on nitrogen-doped carbon nanotubes as efficient chemical anchors and polysulfide conversion catalysts for lithium-sulfur batteries. ChemElectroChem 7, 3767-3775 ( 2020). https://doi.org/10.1002/celc.202000909
|
174. |
H. Li, Y. Wang, H. Chen, B. Niu, W. Zhang et al., Synergistic mediation of polysulfide immobilization and conversion by a catalytic and dual-adsorptive system for high performance lithium-sulfur batteries. Chem. Eng. J. 406, 126802 ( 2021). https://doi.org/10.1016/j.cej.2020.126802
|
175. |
C. Qi, M. Cai, Z. Li, J. Jin, B.V.R. Chowdari et al., Ultrathin TiO 2 surface layer coated TiN nanoparticles in freestanding film for high sulfur loading Li-S battery. Chem. Eng. J. 399, 125674 ( 2020). https://doi.org/10.1016/j.cej.2020.125674
|
176. |
C. Wei, M. Tian, M. Wang, Z. Shi, L. Yu et al., Universal in situ crafted MO x-MXene heterostructures as heavy and multifunctional hosts for 3D-printed Li-S batteries. ACS Nano 14, 16073-16084 ( 2020). https://doi.org/10.1021/acsnano.0c07999
|
177. |
|
178. |
|
179. |
H. Zhang, L.K. Ono, G. Tong, Y. Liu, Y. Qi, Long-life lithium-sulfur batteries with high areal capacity based on coaxial CNTs@TiN-TiO 2 sponge. Nat. Commun. 12, 4738 ( 2021). https://doi.org/10.1038/s41467-021-24976-y
|
180. |
J. Cai, Z. Sun, W. Cai, N. Wei, Y. Fan et al., A robust ternary heterostructured electrocatalyst with conformal graphene chainmail for expediting Bi-directional sulfur redox in Li-S batteries. Adv. Funct. Mater. 31, 2100586 ( 2021). https://doi.org/10.1002/adfm.202100586
|
181. |
W. Xu, H. Pang, H. Zhou, Z. Jian, R. Hu et al., Lychee-like TiO 2@TiN dual-function composite material for lithium-sulfur batteries. RSC Adv. 10, 2670-2676 ( 2020). https://doi.org/10.1039/c9ra09534a
|
182. |
J. Li, Y. Chen, S. Zhang, W. Xie, S.-M. Xu et al., Coordinating adsorption and catalytic activity of polysulfide on hierarchical integrated electrodes for high-performance flexible Li-S batteries. ACS Appl. Mater. Interfaces 12, 49519-49529 ( 2020). https://doi.org/10.1021/acsami.0c10453
|
183. |
Z. He, X. Liu, M. Zhang, L. Guo, M. Ajmal et al., Coupling ferromagnetic ordering electron transfer channels and surface reconstructed active species for spintronic electrocatalysis of water oxidation. J. Energy Chem. 85, 570-580 ( 2023). https://doi.org/10.1016/j.jechem.2023.06.043
|
184. |
W. Zhou, D. Zhao, Q. Wu, J. Dan, X. Zhu et al., Rational design of the Lotus-like N-Co 2VO 4-co heterostructures with well-defined interfaces in suppressing the shuttle effect and dendrite growth in lithium-sulfur batteries. Small 17, 2104109 ( 2021). https://doi.org/10.1002/smll.202104109
|