1. |
M. Jiang, P. Mu, H. Zhang, T. Dong, B. Tang et al., An endotenon sheath-inspired double-network binder enables superior cycling performance of silicon electrodes. Nano-Micro Lett. 14, 87 ( 2022). https://doi.org/10.1007/s40820-022-00833-5
|
2. |
M.P. Fan, Y.C. Chen, Y.M. Chen, Z.X. Huang, W.L. Wu et al., NiS 2 nanosheet arrays on stainless steel foil as binder-free anode for high-power sodium-ion batteries. Rare Met. 41, 1294-1303 ( 2022). https://doi.org/10.1007/s12598-021-01890-2
|
3. |
M. Han, Y. Mu, J. Guo, L. Wei, L. Zeng et al., Monolayer MoS 2 fabricated by in situ construction of interlayer electrostatic repulsion enables ultrafast ion transport in lithium-ion batteries. Nano-Micro Lett. 15, 80 ( 2023). https://doi.org/10.1007/s40820-023-01042-4
|
4. |
J. Wang, W. Huang, Y.S. Kim, Y.K. Jeong, S.C. Kim et al., Scalable synthesis of nanoporous silicon microparticles for highly cyclable lithium-ion batteries. Nano Res. 13, 1558-1563 ( 2020). https://doi.org/10.1007/s12274-020-2770-4
|
5. |
J. Wang, L. Liao, H.R. Lee, F. Shi, W. Huang et al., Surface-engineered mesoporous silicon microparticles as high-Coulombic-efficiency anodes for lithium-ion batteries. Nano Energy 61, 404-410 ( 2019). https://doi.org/10.1016/j.nanoen.2019.04.070
|
6. |
|
7. |
T. Mu, Y. Zhao, C. Zhao, N.G. Holmes, S. Lou et al., Stable silicon anodes by molecular layer deposited artificial zincone coatings. Adv. Funct. Mater. 31, 2010526 ( 2021). https://doi.org/10.1002/adfm.202010526
|
8. |
J. Wang, L. Liao, Y. Li, J. Zhao, F. Shi et al., Shell-protective secondary silicon nanostructures as pressure-resistant high-volumetric-capacity anodes for lithium-ion batteries. Nano Lett. 18, 7060-7065 ( 2018). https://doi.org/10.1021/acs.nanolett.8b03065
|
9. |
H. Wu, G. Zheng, N. Liu, T.J. Carney, Y. Yang et al., Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Lett. 12, 904-909 ( 2012). https://doi.org/10.1021/nl203967r
|
10. |
R. Zhu, Z. Wang, X. Hu, X. Liu, H. Wang, Silicon in hollow carbon nanospheres assembled microspheres cross-linked with N-doped carbon fibers toward a binder free, high performance, and flexible anode for lithium-ion batteries. Adv. Funct. Mater. 31, 2101487 ( 2021). https://doi.org/10.1002/adfm.202101487
|
11. |
|
12. |
L. Zhou, Z. Zhuang, H. Zhao, M. Lin, D. Zhao et al., Intricate hollow structures: controlled synthesis and applications in energy storage and conversion. Adv. Mater. 29, 1602914 ( 2017). https://doi.org/10.1002/adma.201602914
|
13. |
W. An, P. He, Z. Che, C. Xiao, E. Guo et al., Scalable synthesis of pore-rich Si/C@C core-shell-structured microspheres for practical long-life lithium-ion battery anodes. ACS Appl. Mater. Interfaces 14, 10308-10318 ( 2022). https://doi.org/10.1021/acsami.1c22656
|
14. |
N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.-W. Lee et al., A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187-192 ( 2014). https://doi.org/10.1038/nnano.2014.6
|
15. |
X. Gao, W. Lu, J. Xu, Unlocking multiphysics design guidelines on Si/C composite nanostructures for high-energy-density and robust lithium-ion battery anode. Nano Energy 81, 105591 ( 2021). https://doi.org/10.1016/j.nanoen.2020.105591
|
16. |
Y. Yao, M.T. McDowell, I. Ryu, H. Wu, N. Liu et al., Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 11, 2949-2954 ( 2011). https://doi.org/10.1021/nl201470j
|
17. |
B. Chen, L. Chen, L. Zu, Y. Feng, Q. Su et al., Zero-strain high-capacity silicon/carbon anode enabled by a MOF-derived space-confined single-atom catalytic strategy for lithium-ion batteries. Adv. Mater. 34, e2200894 ( 2022). https://doi.org/10.1002/adma.202200894
|
18. |
C. Yu, X. Chen, Z. Xiao, C. Lei, C. Zhang et al., Silicon carbide as a protective layer to stabilize Si-based anodes by inhibiting chemical reactions. Nano Lett. 19, 5124-5132 ( 2019). https://doi.org/10.1021/acs.nanolett.9b01492
|
19. |
X. Han, Z. Zhang, H. Chen, Q. Zhang, S. Chen et al., On the interface design of Si and multilayer graphene for a high-performance Li-ion battery anode. ACS Appl. Mater. Interfaces 12, 44840-44849 ( 2020). https://doi.org/10.1021/acsami.0c13821
|
20. |
Z. Liu, P. Guo, B. Liu, W. Xie, D. Liu et al., Carbon-coated Si nanoparticles/reduced graphene oxide multilayer anchored to nanostructured current collector as lithium-ion battery anode. Appl. Surf. Sci. 396, 41-47 ( 2017). https://doi.org/10.1016/j.apsusc.2016.11.045
|
21. |
Q. Xu, J.-Y. Li, J.-K. Sun, Y.-X. Yin, L.-J. Wan et al., Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv. Energy Mater. 7, 1601481 ( 2017). https://doi.org/10.1002/aenm.201601481
|
22. |
|
23. |
X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu et al., Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 1522-1531 ( 2012). https://doi.org/10.1021/nn204476h
|
24. |
J. Ryu, T. Bok, S.H. Joo, S. Yoo, G. Song et al., Electrochemical scissoring of disordered silicon-carbon composites for high-performance lithium storage. Energy Storage Mater. 36, 139-146 ( 2021). https://doi.org/10.1016/j.ensm.2020.12.023
|
25. |
Q. Xiao, M. Gu, H. Yang, B. Li, C. Zhang et al., Inward lithium-ion breathing of hierarchically porous silicon anodes. Nat. Commun. 6, 8844 ( 2015). https://doi.org/10.1038/ncomms9844
|
26. |
|
27. |
X.H. Liu, H. Zheng, L. Zhong, S. Huang, K. Karki et al., Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11, 3312-3318 ( 2011). https://doi.org/10.1021/nl201684d
|
28. |
M. Han, J. Yu, Pressure-induced vapor synthesis of carbon-encapsulated SiO x/C composite spheres with optimized composition for long-life, high-rate, and high-areal-capacity lithium-ion battery anodes. Energy Technol. 7, 1900084 ( 2019). https://doi.org/10.1002/ente.201900084
|
29. |
|
30. |
|
31. |
M. Han, Z. Lin, X. Ji, Y. Mu, J. Li et al., Growth of flexible and porous surface layers of vertical graphene sheets for accommodating huge volume change of silicon in lithium-ion battery anodes. Mater. Today Energy 17, 100445 ( 2020). https://doi.org/10.1016/j.mtener.2020.100445
|
32. |
M. Zhao, J. Zhang, X. Zhang, K. Duan, H. Dong et al., Application of high-strength, high-density, isotropic Si/C composites in commercial lithium-ion batteries. Energy Storage Mater. 61, 102857 ( 2023). https://doi.org/10.1016/j.ensm.2023.102857
|
33. |
Z. Wang, Q. Yao, C. Neumann, F. Börrnert, J. Renner et al., Identification of semiconductive patches in thermally processed monolayer oxo-functionalized graphene. Angew. Chem. Int. Ed. 59, 13657-13662 ( 2020). https://doi.org/10.1002/anie.202004005
|
34. |
Z. Li, M. Han, P. Yu, Q. Wu, Y. Zhang et al., Si-C nanocomposites supported on vertical graphene sheets grown on graphite for fast-charging lithium ion batteries. J. Energy Storage 67, 107582 ( 2023). https://doi.org/10.1016/j.est.2023.107582
|
35. |
J. Liu, J. Jiang, Q. Zhou, Z. Chen, R. Zhang et al., Manipulation of π-aromatic conjugation in two-dimensional Sn-organic materials for efficient lithium storage. eScience 3, 100094 ( 2023). https://doi.org/10.1016/j.esci.2023.100094
|
36. |
S. Chae, S. Park, K. Ahn, G. Nam, T. Lee et al., Gas phase synthesis of amorphous silicon nitride nanoparticles for high-energy LIBs. Energy Environ. Sci. 13, 1212-1221 ( 2020). https://doi.org/10.1039/C9EE03857D
|
37. |
L. Yu, J. Li, G. Wang, B. Peng, R. Liu et al., Rational design of unique MoSe 2-carbon nanobowl particles endows superior alkali metal-ion storage beyond lithium. ACS Appl. Mater. Interfaces 13, 61116-61128 ( 2021). https://doi.org/10.1021/acsami.1c18234
|
38. |
Z. Li, F. Yuan, M. Han, J. Yu, Atomic-scale laminated structure of O-doped WS 2 and carbon layers with highly enhanced ion transfer for fast-charging lithium-ion batteries. Small 18, e2202495 ( 2022). https://doi.org/10.1002/smll.202202495
|
39. |
K. Zou, P. Cai, B. Wang, C. Liu, J. Li et al., Insights into enhanced capacitive behavior of carbon cathode for lithium ion capacitors: the coupling of pore size and graphitization engineering. Nano-Micro Lett. 12, 121 ( 2020). https://doi.org/10.1007/s40820-020-00458-6
|
40. |
J. Li, L. Yu, Y. Li, G. Wang, L. Zhao et al., Phosphorus-doping-induced kinetics modulation for nitrogen-doped carbon mesoporous nanotubes as superior alkali metal anode beyond lithium for high-energy potassium-ion hybrid capacitors. Nanoscale 13, 692-699 ( 2021). https://doi.org/10.1039/d0nr06888h
|
41. |
W. He, H. Xu, Z. Chen, J. Long, J. Zhang et al., Regulating the solvation structure of Li + enables chemical prelithiation of silicon-based anodes toward high-energy lithium-ion batteries. Nano-Micro Lett. 15, 107 ( 2023). https://doi.org/10.1007/s40820-023-01068-8
|
42. |
M. Han, Y. Mu, F. Yuan, X. Bai, J. Yu, Vapor pressure-assisted synthesis of chemically bonded TiO 2/C nanocomposites with highly mesoporous structure for lithium-ion battery anode with high capacity, ultralong cycling lifetime, and superior rate capability. J. Power. Sources 465, 228206 ( 2020). https://doi.org/10.1016/j.jpowsour.2020.228206
|
43. |
J. Lin, Y. Zhou, J. Wen, W. Si, H. Gao et al., Pyrrole derivatives as interlayer modifier of Li-S batteries: modulation of electrochemical performance by molecular perturbation. J. Energy Chem. 75, 164-172 ( 2022). https://doi.org/10.1016/j.jechem.2022.08.014
|
44. |
|
45. |
K. Zou, Z. Song, X. Gao, H. Liu, Z. Luo et al., Molecularly compensated pre-metallation strategy for metal-ion batteries and capacitors. Angew. Chem. Int. Ed. 60, 17070-17079 ( 2021). https://doi.org/10.1002/anie.202103569
|
46. |
L.-L. Lu, Z.-X. Zhu, T. Ma, T. Tian, H.-X. Ju et al., Superior fast-charging lithium-ion batteries enabled by the high-speed solid-state lithium transport of an intermetallic Cu 6 Sn 5 network. Adv. Mater. 34, e2202688 ( 2022). https://doi.org/10.1002/adma.202202688
|
47. |
S. Zhao, R. Qiu, J. Su, F. Li, Y. Liu et al., Constructing low N/P ratio sodium-based batteries by reversible Na metal electrodeposition on sodiophilic zinc-metal-decorated hard carbons. J. Power. Sources 544, 231862 ( 2022). https://doi.org/10.1016/j.jpowsour.2022.231862
|