1. |
|
2. |
J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14, 42 ( 2022). https://doi.org/10.1007/s40820-021-00782-5
|
3. |
Y. Meng, M. Wang, J. Xu, K. Xu, K. Zhang et al., Balancing interfacial reactions through regulating p-band centers by an indium tin oxide protective layer for stable Zn metal anodes. Angew. Chem. Int. Ed. 62, e202308454 ( 2023). https://doi.org/10.1002/anie.202308454
|
4. |
J.Y. Kim, G. Liu, R.E.A. Ardhi, J. Park, H. Kim et al., Stable Zn metal anodes with limited Zn-doping in MgF 2 interphase for fast and uniformly ionic flux. Nano-Micro Lett. 14, 46 ( 2022). https://doi.org/10.1007/s40820-021-00788-z
|
5. |
G. Ma, L. Miao, W. Yuan, K. Qiu, M. Liu et al., Non-flammable, dilute, and hydrous organic electrolytes for reversible Zn batteries. Chem. Sci. 13, 11320-11329 ( 2022). https://doi.org/10.1039/D2SC04143J
|
6. |
X. Zheng, Z. Liu, J. Sun, R. Luo, K. Xu et al., Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities. Nat. Commun. 14, 76 ( 2023). https://doi.org/10.1038/s41467-022-35630-6
|
7. |
D. Wang, Q. Li, Y. Zhao, H. Hong, H. Li et al., Insight on organic molecules in aqueous Zn-ion batteries with an emphasis on the Zn anode regulation. Adv. Energy Mater. 12, 2102707 ( 2022). https://doi.org/10.1002/aenm.202102707
|
8. |
W. Yuan, X. Nie, G. Ma, M. Liu, Y. Wang et al., Realizing textured zinc metal anodes through regulating electrodeposition current for aqueous zinc batteries. Angew. Chem. Int. Ed. 62, e202218386 ( 2023). https://doi.org/10.1002/anie.202218386
|
9. |
M. Wang, J. Ma, Y. Meng, J. Sun, Y. Yuan et al., High-capacity zinc anode with 96 % utilization rate enabled by solvation structure design. Angew. Chem. Int. Ed. 62, e202214966 ( 2023). https://doi.org/10.1002/anie.202214966
|
10. |
F. Wan, Y. Zhang, L. Zhang, D. Liu, C. Wang et al., Reversible oxygen redox chemistry in aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 58, 7062-7067 ( 2019). https://doi.org/10.1002/anie.201902679
|
11. |
A. Guerfi, J. Trottier, I. Boyano, I. De Meatza, J.A. Blazquez et al., High cycling stability of zinc-anode/conducting polymer rechargeable battery with non-aqueous electrolyte. J. Power Sour. 248, 1099-1104 ( 2014). https://doi.org/10.1016/j.jpowsour.2013.09.082
|
12. |
Q. Zhang, J. Luan, Y. Tang, X. Ji, H. Wang, Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59, 13180-13191 ( 2020). https://doi.org/10.1002/anie.202000162
|
13. |
|
14. |
|
15. |
F. Xie, L. Zhang, B. Chen, D. Chao, Q. Gu et al., Revealing the origin of improved reversible capacity of dual-shell bismuth boxes anode for potassium-ion batteries. Matter 1, 1681-1693 ( 2019). https://doi.org/10.1016/j.matt.2019.07.006
|
16. |
Y. Zhang, Y. Liang, H. Dong, X. Wang, Y. Yao, Charge storage mechanism of a quinone polymer electrode for zinc-ion batteries. J. Electrochem. Soc. 167, 070558 ( 2020). https://doi.org/10.1149/1945-7111/ab847a
|
17. |
|
18. |
P. He, G. Zhang, X. Liao, M. Yan, X. Xu et al., Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 8, 1702463 ( 2018). https://doi.org/10.1002/aenm.201702463
|
19. |
M.S. Javed, H. Lei, Z. Wang, B.-T. Liu, X. Cai et al., 2D V 2O 5 nanosheets as a binder-free high-energy cathode for ultrafast aqueous and flexible Zn-ion batteries. Nano Energy 70, 104573 2020). https://doi.org/10.1016/j.nanoen.2020.104573
|
20. |
|
21. |
Z. Cao, J. Fu, M. Wu, T. Hua, H. Hu, Synchronously manipulating Zn 2+ transfer and hydrogen/oxygen evolution kinetics in MXene host electrodes toward symmetric Zn-ions micro-supercapacitor with enhanced areal energy density. Energy Stor. Mater. 40, 10-21 ( 2021). https://doi.org/10.1016/j.ensm.2021.04.047
|
22. |
Q. Lei, J. Zhang, Z. Liang, Y. Yue, Z. Ren et al., Synergistic engineering of sulfur vacancies and heterointerfaces in copper sulfide anodes for aqueous Zn-ion batteries with fast diffusion kinetics and an ultralong lifespan. Adv. Energy Mater. 12, 2200547 ( 2022). https://doi.org/10.1002/aenm.202200547
|
23. |
Z. Yang, X. Pan, Y. Shen, R. Chen, T. Li et al., New insights into phase-mechanism relationship of Mg x MnO 2 nanowires in aqueous zinc-ion batteries. Small 18, e2107743 ( 2022). https://doi.org/10.1002/smll.202107743
|
24. |
R.M. Fernandez-Domene, R. Sánchez-Tovar, J. García-Antón, Passive behavior and passivity breakdown of AISI 304 in LiBr solutions through scanning electrochemical microscopy. J. Electrochem. Soc. 161161, C565-C572 ( 2014). https://doi.org/10.1149/2.1051412jes
|
25. |
B. Kinzer, A.L. Davis, T. Krauskopf, H. Hartmann, W.S. LePage et al., Operando analysis of the molten Li|LLZO interface: understanding how the physical properties of Li affect the critical current density. Matter 4, 1947-1961 ( 2021). https://doi.org/10.1016/j.matt.2021.04.016
|
26. |
R.F. Schaller, A. Mishra, J.M. Rodelas, J.M. Taylor, E.J. Schindelholz, The role of microstructure and surface finish on the corrosion of selective laser melted 304L. J. Electrochem. Soc. 165, C234-C242 ( 2018). https://doi.org/10.1149/2.0431805jes
|
27. |
Y. Yuan, K. Amine, J. Lu, R. Shahbazian-Yassar, Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy. Nat. Commun. 8, 15806 ( 2017). https://doi.org/10.1038/ncomms15806
|
28. |
Q. Zhang, J. Ma, L. Mei, J. Liu, Z. Li et al., In situ TEM visualization of LiF nanosheet formation on the cathode-electrolyte interphase (CEI) in liquid-electrolyte lithium-ion batteries. Matter 5, 1235-1250 ( 2022). https://doi.org/10.1016/j.matt.2022.01.015
|
29. |
S. Lee, I. Kang, J. Kim, S.H. Kim, K. Kang et al., Real-time visualization of Zn metal plating/stripping in aqueous batteries with high areal capacities. J. Power. Sour. 472, 228334 ( 2020). https://doi.org/10.1016/j.jpowsour.2020.228334
|
30. |
D.A. Shapiro, Y.-S. Yu, T. Tyliszczak, J. Cabana, R. Celestre et al., Chemical composition mapping with nanometre resolution by soft X-ray microscopy. Nat. Photon. 8, 765-769 ( 2014). https://doi.org/10.1038/nphoton.2014.207
|
31. |
N.-W. Li, Y. Shi, Y.-X. Yin, X.-X. Zeng, J.-Y. Li et al., A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew. Chem. Int. Ed. 57, 1505-1509 ( 2018). https://doi.org/10.1002/anie.201710806
|
32. |
S.-Y. Lang, R.-J. Xiao, L. Gu, Y.-G. Guo, R. Wen et al., Interfacial mechanism in lithium-sulfur batteries: how salts mediate the structure evolution and dynamics. J. Am. Chem. Soc. 140, 8147-8155 ( 2018). https://doi.org/10.1021/jacs.8b02057
|
33. |
A. Miki, K. Nishikawa, T. Ozawa, H. Matsushima, M. Ueda, In situ measurement of Al 3+ concentration profile during Al anodization using digital holographic interferometric microscope. J. Electrochem. Soc. 167, 062501 ( 2020). https://doi.org/10.1149/1945-7111/ab7bd6
|
34. |
I. Arise, Y. Fukunaka, F.R. McLarnon, T. Abe, In situ observation at the surface of zinc in alkaline solution under pulsed current by holographic interferometry. J. Electrochem. Soc. 168, 080509 ( 2021). https://doi.org/10.1149/1945-7111/ac18e3
|
35. |
P. Marquet, B. Rappaz, P.J. Magistretti, E. Cuche, Y. Emery et al., Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett. 30, 468-470 ( 2005). https://doi.org/10.1364/ol.30.000468
|
36. |
|
37. |
L. Li, C. Wang, B. Yuan, S. Chen, Numerical reconstruction of digital holograms for the study of pitting dynamic processes of the X70 carbon steel in NaCl solution. Electrochem. Commun. 10, 103-107 ( 2008). https://doi.org/10.1016/j.elecom.2007.11.004
|
38. |
|
39. |
C. Lai, B. Yuan, H. Dai, K. Xi, C.J. Harris et al., Online digital holographic method for interface reaction monitoring in lithium-ion batteries. J. Phys. Chem. C 121, 24733-24739 ( 2017). https://doi.org/10.1021/acs.jpcc.7b09920
|
40. |
H. Dai, B. Yuan, C. Bai, C. Lai, C. Wang, Communication—direct observation of the shuttle phenomenon in lithium-sulfur batteries via the digital holographic method. J. Electrochem. Soc. 165, A2866-A2868 ( 2018). https://doi.org/10.1149/2.1271811jes
|
41. |
T.D. Kühne, M. Iannuzzi, M. Del Ben, V.V. Rybkin, P. Seewald et al., CP2K: an electronic structure and molecular dynamics software package-Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 ( 2020). https://doi.org/10.1063/5.0007045
|
42. |
|
43. |
|
44. |
J. Zhang, T. Lu, Efficient evaluation of electrostatic potential with computerized optimized code. Phys. Chem. Chem. Phys. 23, 20323-20328 ( 2021). https://doi.org/10.1039/d1cp02805g
|
45. |
|
46. |
M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith et al., GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19-25 ( 2015). https://doi.org/10.1016/j.softx.2015.06.001
|
47. |
|
48. |
Z. Cai, J. Wang, Z. Lu, R. Zhan, Y. Ou et al., Ultrafast metal electrodeposition revealed by in situ optical imaging and theoretical modeling toward fast-charging Zn battery chemistry. Angew. Chem. Int. Ed. 61, e202116560 ( 2022). https://doi.org/10.1002/anie.202116560
|
49. |
H. Liu, Y. Zhang, C. Wang, J.N. Glazer, Z. Shan et al., Understanding and controlling the nucleation and growth of Zn electrodeposits for aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 13, 32930-32936 ( 2021). https://doi.org/10.1021/acsami.1c06131
|
50. |
Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12, 1938-1949 ( 2019). https://doi.org/10.1039/C9EE00596J
|
51. |
L. Cao, D. Li, E. Hu, J. Xu, T. Deng et al., Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 142, 21404-21409 ( 2020). https://doi.org/10.1021/jacs.0c09794
|
52. |
Q. Li, A. Chen, D. Wang, Y. Zhao, X. Wang et al., Tailoring the metal electrode morphology via electrochemical protocol optimization for long-lasting aqueous zinc batteries. Nat. Commun. 13, 3699 ( 2022). https://doi.org/10.1038/s41467-022-31461-7
|
53. |
J. Li, L. He, F. Qin, J. Fang, B. Hong et al., Dual-enhancement on electrochemical performance with thioacetamide as an electrolyte additive for lithium-sulfur batteries. Electrochim. Acta 376, 138041 2021). https://doi.org/10.1016/j.electacta.2021.138041
|
54. |
H. Yu, D. Chen, Q. Li, C. Yan, Z. Jiang et al., In situ construction of anode-molecule interface via lone-pair electrons in trace organic molecules additives to achieve stable zinc metal anodes. Adv. Energy Mater. 13, 2300550 ( 2023). https://doi.org/10.1002/aenm.202300550
|