1. |
|
2. |
|
3. |
L. Gao, D. Huang, Y. Shen, M. Wang, Rutile-TiO 2 decorated Li 4Ti 5O 12 nanosheet arrays with 3D interconnected architecture as anodes for high performance hybrid supercapacitors. J. Mater. Chem. A 3, 23570-23576 ( 2015). https://doi.org/10.1039/C5TA07666H
|
4. |
B. Li, J. Zheng, H. Zhang, L. Jin, D. Yang et al., Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv. Mater. 30, 1705670 ( 2018). https://doi.org/10.1002/adma.201705670
|
5. |
|
6. |
|
7. |
H. Kim, M.-Y. Cho, M.-H. Kim, K.-Y. Park, H. Gwon et al., A novel high-energy hybrid supercapacitor with an anatase TiO 2-reduced graphene oxide anode and an activated carbon cathode. Adv. Energy Mater. 3, 1500-1506 ( 2013). https://doi.org/10.1002/aenm.201300467
|
8. |
W. Zhu, S.A. El-Khodary, S. Li, B. Zou, R. Kang et al., Roselle-like Zn 2Ti 3O 8/rGO nanocomposite as anode for lithium ion capacitor. Chem. Eng. J. 385, 123881 ( 2020). https://doi.org/10.1016/j.cej.2019.123881
|
9. |
|
10. |
Z. Xiao, J. Han, H. He, X. Zhang, J. Xiao et al., A template oriented one-dimensional Schiff-base polymer: towards flexible nitrogen-enriched carbonaceous electrodes with ultrahigh electrochemical capacity. Nanoscale 13, 19210-19217 ( 2021). https://doi.org/10.1039/D1NR05618B
|
11. |
G. Yan, X. Sun, Y. Zhang, H. Li, H. Huang et al., Metal-free 2D/2D van der Waals heterojunction based on covalent organic frameworks for highly efficient solar energy catalysis. Nano-Micro Lett. 15, 132 ( 2023). https://doi.org/10.1007/s40820-023-01100-x
|
12. |
|
13. |
S. Wang, Q. Wang, P. Shao, Y. Han, X. Gao et al., Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J. Am. Chem. Soc. 139, 4258-4261 ( 2017). https://doi.org/10.1021/jacs.7b02648
|
14. |
S. Jin, O. Allam, S.S. Jang, S.W. Lee, Covalent organic frameworks: design and applications in electrochemical energy storage devices. InfoMat 4, e12277 ( 2022). https://doi.org/10.1002/inf2.12277
|
15. |
H. Yang, S. Zhang, L. Han, Z. Zhang, Z. Xue et al., High conductive two-dimensional covalent organic framework for lithium storage with large capacity. ACS Appl. Mater. Interfaces 8, 5366-5375 ( 2016). https://doi.org/10.1021/acsami.5b12370
|
16. |
W. Yan, F. Yu, Y. Jiang, J. Su, S.-W. Ke et al., Self-assembly construction of carbon nanotube network-threaded tetrathiafulvalene-bridging covalent organic framework composite anodes for high-performance hybrid lithium-ion capacitors. Small Struct. 3, 2200126 ( 2022). https://doi.org/10.1002/sstr.202200126
|
17. |
Q. Geng, H. Wang, J. Wang, J. Hong, W. Sun et al., Boosting the capacity of aqueous Li-ion capacitors via pinpoint surgery in nanocoral-like covalent organic frameworks. Small Methods 6, e2200314 ( 2022). https://doi.org/10.1002/smtd.202200314
|
18. |
Y. Wang, N. Chen, B. Zhou, X. Zhou, B. Pu et al., NH 3-induced in situ etching strategy derived 3D-interconnected porous MXene/carbon dots films for high performance flexible supercapacitors. Nano-Micro Lett. 15, 231 ( 2023). https://doi.org/10.1007/s40820-023-01204-4
|
19. |
X. Xu, R. Xiong, Z. Zhang, X. Zhang, C. Gu et al., Space-partitioning and metal coordination in free-standing covalent organic framework nano-films: over 230 mWh/cm 3 energy density for flexible in-plane micro-supercapacitors. Chem. Eng. J. 447, 137447 ( 2022). https://doi.org/10.1016/j.cej.2022.137447
|
20. |
H. Zong, A. Zhang, J. Dong, Y. He, H. Fu et al., Flexible asymmetric supercapacitor based on open-hollow nickel-MOFs/reduced graphene oxide aerogel electrodes. Chem. Eng. J. 475, 146088 ( 2023). https://doi.org/10.1016/j.cej.2023.146088
|
21. |
H. Guo, A. Zhang, H. Fu, H. Zong, F. Jin et al., In situ generation of CeCoS x bimetallic sulfide derived from “egg-box” seaweed biomass on S/N Co-doped graphene aerogels for flexible all solid-state supercapacitors. Chem. Eng. J. 453, 139633 ( 2023). https://doi.org/10.1016/j.cej.2022.139633
|
22. |
Q. Zhang, S. Liu, J. Huang, H. Fu, Q. Fan et al., In situ selective selenization of ZIF-derived CoSe 2 nanoparticles on NiMn-layered double hydroxide@CuBr 2 heterostructures for high performance supercapacitors. J. Colloid Interface Sci. 655, 273-285 ( 2024). https://doi.org/10.1016/j.jcis.2023.11.008
|
23. |
A. Zhang, Q. Zhang, H. Fu, H. Zong, H. Guo, Metal-organic frameworks and their derivatives-based nanostructure with different dimensionalities for supercapacitors. Small 19, e2303911 ( 2023). https://doi.org/10.1002/smll.202303911
|
24. |
H. Sahabudeen, H. Qi, M. Ballabio, M. Položij, S. Olthof et al., Highly crystalline and semiconducting imine-based two-dimensional polymers enabled by interfacial synthesis. Angew. Chem. Int. Ed. 59, 6028-6036 ( 2020). https://doi.org/10.1002/anie.201915217
|
25. |
K. Liu, H. Qi, R. Dong, R. Shivhare, M. Addicoat et al., On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nat. Chem. 11, 994-1000 ( 2019). https://doi.org/10.1038/s41557-019-0327-5
|
26. |
S. Kim, H. Lim, J. Lee, H.C. Choi, Synthesis of a scalable two-dimensional covalent organic framework by the photon-assisted imine condensation reaction on the water surface. Langmuir 34, 8731-8738 ( 2018). https://doi.org/10.1021/acs.langmuir.8b00951
|
27. |
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518-522 ( 2013). https://doi.org/10.1038/nmat3601
|
28. |
C. Wang, F. Liu, J. Chen, Z. Yuan, C. Liu et al., A graphene-covalent organic framework hybrid for high-performance supercapacitors. Energy Storage Mater. 32, 448-457 ( 2020). https://doi.org/10.1016/j.ensm.2020.07.001
|
29. |
K. Jiang, I.A. Baburin, P. Han, C. Yang, X. Fu et al., Interfacial approach toward benzene-bridged polypyrrole film-based micro-supercapacitors with ultrahigh volumetric power density. Adv. Funct. Mater. 30, 1908243 ( 2020). https://doi.org/10.1002/adfm.201908243
|
30. |
Y. Yang, X. Zhao, H.-E. Wang, M. Li, C. Hao et al., Phosphorized SnO 2/graphene heterostructures for highly reversible lithium-ion storage with enhanced pseudocapacitance. J. Mater. Chem. A 6, 3479-3487 ( 2018). https://doi.org/10.1039/C7TA10435A
|
31. |
S. Kandambeth, A. Mallick, B. Lukose, M.V. Mane, T. Heine et al., Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 134, 19524-19527 ( 2012). https://doi.org/10.1021/ja308278w
|
32. |
Y. Liang, M. Xia, Q. Yu, Y. Li, Z. Sui et al., Guanidinium-based ionic covalent organic frameworks for capture of uranyl tricarbonate. Adv. Compos. Hybrid Mater. 5, 184-194 ( 2022). https://doi.org/10.1007/s42114-021-00311-3
|
33. |
M.K. Hota, S. Chandra, Y. Lei, X. Xu, M.N. Hedhili et al., Electrochemical thin-film transistors using covalent organic framework channel. Adv. Funct. Mater. 32, 2201120 ( 2022). https://doi.org/10.1002/adfm.202201120
|
34. |
X. Chen, Y. Li, L. Wang, Y. Xu, A. Nie et al., High-lithium-affinity chemically exfoliated 2D covalent organic frameworks. Adv. Mater. 31, e1901640 ( 2019). https://doi.org/10.1002/adma.201901640
|
35. |
X. Xu, Z. Zhang, R. Xiong, G. Lu, J. Zhang et al., Bending resistance covalent organic framework superlattice: “nano-hourglass” -induced charge accumulation for flexible in-plane micro-supercapacitors. Nano-Micro Lett. 15, 25 ( 2022). https://doi.org/10.1007/s40820-022-00997-0
|
36. |
Y. Yang, C. Zhang, Z. Mei, Y. Sun, Q. An et al., Interfacial engineering of perfluoroalkyl functionalized covalent organic framework achieved ultra-long cycled and dendrite-free lithium anodes. Nano Res. 16, 9289-9298 ( 2023). https://doi.org/10.1007/s12274-023-5534-0
|
37. |
J. He, N. Wang, Z. Yang, X. Shen, K. Wang et al., Fluoride graphdiyne as a free-standing electrode displaying ultra-stable and extraordinary high Li storage performance. Energy Environ. Sci. 11, 2893-2903 ( 2018). https://doi.org/10.1039/C8EE01642A
|
38. |
X. Wu, S. Xia, Y. Huang, X. Hu, B. Yuan et al., High-performance, low-cost, and dense-structure electrodes with high mass loading for lithium-ion batteries. Adv. Funct. Mater. 29, 1903961 ( 2019). https://doi.org/10.1002/adfm.201903961
|
39. |
F. Yuan, W. Song, D. Zhang, Y.-S. Wu, Z. Li et al., Semi-ionic C-F bond inducing fast ion storage and electron transfer in carbon anode for potassium-ion batteries. Sci. China Mater. 66, 2630-2640 ( 2023). https://doi.org/10.1007/s40843-022-2419-4
|
40. |
X. Wang, H. Hao, J. Liu, T. Huang, A. Yu, A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries. Electrochim. Acta 56, 4065-4069 ( 2011). https://doi.org/10.1016/j.electacta.2010.12.108
|
41. |
X. Xu, C. Qi, Z. Hao, H. Wang, J. Jiu et al., The surface coating of commercial LiFePO 4 by utilizing ZIF-8 for high electrochemical performance lithium ion battery. Nano-Micro Lett. 10, 1 ( 2018). https://doi.org/10.1007/s40820-017-0154-4
|
42. |
X. Li, M. Sun, C. Xu, X. Zhang, G. Wang et al., Fast kinetic carbon anode inherited and developed from architectural designed porous aromatic framework for flexible lithium ion micro capacitors. Adv. Funct. Mater. 33, 2300460 ( 2023). https://doi.org/10.1002/adfm.202300460
|
43. |
S. Zheng, J. Ma, Z.-S. Wu, F. Zhou, Y.-B. He et al., All-solid-state flexible planar lithium ion micro-capacitors. Energy Environ. Sci. 11, 2001-2009 ( 2018). https://doi.org/10.1039/C8EE00855H
|
44. |
X. Yan, Y. He, X. Liu, S. Jing, J. Guan et al., Deterministic effect of the solid-state diffusion energy barrier for a charge carrier on the self-discharge of supercapacitors. ACS Energy Lett. 8, 2376-2384 ( 2023). https://doi.org/10.1021/acsenergylett.3c00453
|