1. |
|
2. |
|
3. |
|
4. |
|
5. |
W. Qian, S. Xu, X. Zhang, C. Li, W. Yang et al., Differences and similarities of photocatalysis and electrocatalysis in two-dimensional nanomaterials: strategies, traps, applications and challenges. Nano-Micro Lett. 13, 156 ( 2021). https://doi.org/10.1007/s40820-021-00681-9
|
6. |
Z. Lyu, S. Ding, D. Du, K. Qiu, J. Liu et al., Recent advances in biomedical applications of 2D nanomaterials with peroxidase-like properties. Adv. Drug Deliv. Rev. 185, 114269 ( 2022). https://doi.org/10.1016/j.addr.2022.114269
|
7. |
|
8. |
|
9. |
M. Wang, J. Zhu, Y. Zi, Z.-G. Wu, H. Hu et al., Functional two-dimensional black phosphorus nanostructures towards next-generation devices. J. Mater. Chem. A 9, 12433-12473 ( 2021). https://doi.org/10.1039/D1TA02027G
|
10. |
Z. Wei, B. Li, C. Xia, Y. Cui, J. He et al., Various structures of 2D transition-metal dichalcogenides and their applications. Small Method 2, 1800094 2018). https://doi.org/10.1002/smtd.201800094
|
11. |
S. Roy, X. Zhang, A.B. Puthirath, A. Meiyazhagan, S. Bhattacharyya et al., Structure, properties and applications of two-dimensional hexagonal boron nitride. Adv. Mater. 33, e2101589 ( 2021). https://doi.org/10.1002/adma.202101589
|
12. |
H.Y. Hoh, Y. Zhang, Y.L. Zhong, Q. Bao, Harnessing the potential of graphitic carbon nitride for optoelectronic applications. Adv. Opt. Mater. 9, 2100146 ( 2021). https://doi.org/10.1002/adom.202100146
|
13. |
W. Yu, K. Gong, Y. Li, B. Ding, L. Li et al., Flexible 2D materials beyond graphene: synthesis, properties, and applications. Small 18, e2105383 ( 2022). https://doi.org/10.1002/smll.202105383
|
14. |
|
15. |
R. Rajendran, L.K. Shrestha, K. Minami, M. Subramanian, R. Jayavel et al., Dimensionally integrated nanoarchitectonics for a novel composite from 0D, 1D, and 2D nanomaterials: RGO/CNT/CeO 2 ternary nanocomposites with electrochemical performance. J. Mater. Chem. A 2, 18480-18487 ( 2014). https://doi.org/10.1039/C4TA03996C
|
16. |
J. Mei, Y. Zhang, T. Liao, Z. Sun, S.X. Dou, Strategies for improving the lithium-storage performance of 2D nanomaterials. Natl. Sci. Rev. 5, 389-416 ( 2018). https://doi.org/10.1093/nsr/nwx077
|
17. |
C. Murugan, V. Sharma, R.K. Murugan, G. Malaimegu, A. Sundaramurthy, Two-dimensional cancer theranostic nanomaterials: synthesis, surface functionalization and applications in photothermal therapy. J. Control. Release 299, 1-20 ( 2019). https://doi.org/10.1016/j.jconrel.2019.02.015
|
18. |
|
19. |
|
20. |
Y.-C. Lin, R. Torsi, D.B. Geohegan, J.A. Robinson, K. Xiao, Controllable thin-film approaches for doping and alloying transition metal dichalcogenides monolayers. Adv. Sci. 8, 2004249 ( 2021). https://doi.org/10.1002/advs.202004249
|
21. |
R. Wang, Y. Yu, S. Zhou, H. Li, H. Wong et al., Strategies on phase control in transition metal dichalcogenides. Adv. Funct. Mater. 28, 1802473 ( 2018). https://doi.org/10.1002/adfm.201802473
|
22. |
G. Guan, S. Zhang, S. Liu, Y. Cai, M. Low et al., Protein induces layer-by-layer exfoliation of transition metal dichalcogenides. J. Am. Chem. Soc. 137, 6152-6155 ( 2015). https://doi.org/10.1021/jacs.5b02780
|
23. |
G. Guan, J. Xia, S. Liu, Y. Cheng, S. Bai et al., Electrostatic-driven exfoliation and hybridization of 2D nanomaterials. Adv. Mater. 29, 1700326 ( 2017). https://doi.org/10.1002/adma.201700326
|
24. |
S. Li, Y. Ma, N.A.N. Ouedraogo, F. Liu, C. You et al., P-/n-Type modulation of 2D transition metal dichalcogenides for electronic and optoelectronic devices. Nano Res. 15, 123-144 ( 2022). https://doi.org/10.1007/s12274-021-3500-2
|
25. |
|
26. |
Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 28, 1917-1933 ( 2016). https://doi.org/10.1002/adma.201503270
|
27. |
X. Huang, C. Tan, Z. Yin, H. Zhang, 25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials. Adv. Mater. 26, 2185-2204 ( 2014). https://doi.org/10.1002/adma.201304964
|
28. |
Y. Zhao, K. Xu, F. Pan, C. Zhou, F. Zhou et al., Doping, contact and interface engineering of two-dimensional layered transition metal dichalcogenides transistors. Adv. Funct. Mater. 27, 1603484 ( 2017). https://doi.org/10.1002/adfm.201603484
|
29. |
Q. Wang, Y. Lei, Y. Wang, Y. Liu, C. Song et al., Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis. Energy Environ. Sci. 13, 1593-1616 ( 2020). https://doi.org/10.1039/D0EE00450B
|
30. |
S. Chen, D. Huang, M. Cheng, L. Lei, Y. Chen et al., Surface and interface engineering of two-dimensional bismuth-based photocatalysts for ambient molecule activation. J. Mater. Chem. A 9, 196-233 ( 2021). https://doi.org/10.1039/D0TA08165E
|
31. |
X. Gan, D. Lei, R. Ye, H. Zhao, K.-Y. Wong, Transition metal dichalcogenide-based mixed-dimensional heterostructures for visible-light-driven photocatalysis: dimensionality and interface engineering. Nano Res. 14, 2003-2022 ( 2021). https://doi.org/10.1007/s12274-020-2955-x
|
32. |
W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande et al., Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116-130 ( 2017). https://doi.org/10.1016/j.mattod.2016.10.002
|
33. |
|
34. |
X. Xi, Z. Wang, W. Zhao, J.-H. Park, K.T. Law et al., Ising pairing in superconducting NbSe 2 atomiclayers. Nat. Phys. 12, 139-143 ( 2016). https://doi.org/10.1038/nphys3538
|
35. |
Y. Qi, P.G. Naumov, M.N. Ali, C.R. Rajamathi, W. Schnelle et al., Superconductivity in weyl semimetal candidate MoTe 2. Nat. Commun. 7, 11038 ( 2016). https://doi.org/10.1038/ncomms11038
|
36. |
E. Navarro-Moratalla, J.O. Island, S. Mañas-Valero, E. Pinilla-Cienfuegos, A. Castellanos-Gomez et al., Enhanced superconductivity in atomically thin TaS 2. Nat. Commun. 7, 11043 ( 2016). https://doi.org/10.1038/ncomms11043
|
37. |
|
38. |
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699-712 ( 2012). https://doi.org/10.1038/nnano.2012.193
|
39. |
|
40. |
X. Yuan, M. Yang, L. Wang, Y. Li, Structural stability and intriguing electronic properties of two-dimensional transition metal dichalcogenide alloys. Phys. Chem. Chem. Phys. 19, 13846-13854 ( 2017). https://doi.org/10.1039/C7CP01727H
|
41. |
C. Gao, X. Yang, M. Jiang, L. Chen, Z. Chen et al., Machine learning-enabled band gap prediction of monolayer transition metal chalcogenide alloys. Phys. Chem. Chem. Phys. 24, 4653-4665 ( 2022). https://doi.org/10.1039/d1cp05847a
|
42. |
Z. Shi, Q. Zhang, U. Schwingenschlögl, Alloying as a route to monolayer transition metal dichalcogenides with improved optoelectronic performance: Mo(S 1-xSe x) 2 and Mo 1-yW yS 2. ACS Appl. Energy Mater. 1, 2208-2214 ( 2018). https://doi.org/10.1021/acsaem.8b00288
|
43. |
M. Chen, L. Zhu, Q. Chen, N. Miao, C. Si et al., Quantifying the composition dependency of the ground-state structure, electronic property and phase-transition dynamics in ternary transition-metal-dichalcogenide monolayers. J. Mater. Chem. C 8, 721-733 ( 2020). https://doi.org/10.1039/C9TC05487A
|
44. |
H. Li, X. Duan, X. Wu, X. Zhuang, H. Zhou et al., Growth of alloy MoS 2xSe 2(1-x) nanosheets with fully tunable chemical compositions and optical properties. J. Am. Chem. Soc. 136, 3756-3759 ( 2014). https://doi.org/10.1021/ja500069b
|
45. |
Q. Deng, X. Li, H. Si, J. Hong, S. Wang et al., Strong band bowing effects and distinctive optoelectronic properties of 2H and 1T’ phase-tunable Mo xRe 1-xS 2 alloys. Adv. Funct. Mater. 30, 2003264 ( 2020). https://doi.org/10.1002/adfm.202003264
|
46. |
|
47. |
V. Kochat, A. Apte, J.A. Hachtel, H. Kumazoe, A. Krishnamoorthy et al., Re doping in 2D transition metal dichalcogenides as a new route to tailor structural phases and induced magnetism. Adv. Mater. 29, 1703754 ( 2017). https://doi.org/10.1002/adma.201703754
|
48. |
|
49. |
Y. Deng, P. Li, C. Zhu, J. Zhou, X. Wang et al., Controlled synthesis of Mo xW 1-xTe 2 atomic layers with emergent quantum states. ACS Nano 15, 11526-11534 ( 2021). https://doi.org/10.1021/acsnano.1c01441
|
50. |
|
51. |
|
52. |
H. Mo, X. Zhang, Y. Liu, P. Kang, H. Nan et al., Two-dimensional alloying molybdenum tin disulfide monolayers with fast photoresponse. ACS Appl. Mater. Interfaces 11, 39077-39087 ( 2019). https://doi.org/10.1021/acsami.9b13645
|
53. |
C. Tan, Z. Luo, A. Chaturvedi, Y. Cai, Y. Du et al., Preparation of high-percentage 1T-phase transition metal dichalcogenide nanodots for electrochemical hydrogen evolution. Adv. Mater. 30, 1705509 ( 2018). https://doi.org/10.1002/adma.201705509
|
54. |
I.S. Kwon, I.H. Kwak, T.T. Debela, J.Y. Kim, S.J. Yoo et al., Phase-transition Mo 1-xV xSe 2 alloy nanosheets with rich V-Se vacancies and their enhanced catalytic performance of hydrogen evolution reaction. ACS Nano 15, 14672-14682 ( 2021). https://doi.org/10.1021/acsnano.1c04453
|
55. |
I.H. Kwak, I.S. Kwon, T.T. Debela, H.G. Abbas, Y.C. Park et al., Phase evolution of Re 1-xMo xSe 2 alloy nanosheets and their enhanced catalytic activity toward hydrogen evolution reaction. ACS Nano 14, 11995-12005 ( 2020). https://doi.org/10.1021/acsnano.0c05159
|
56. |
X. Liu, J. Wu, W. Yu, L. Chen, Z. Huang et al., Monolayer W xMo 1-xS 2 grown by atmospheric pressure chemical vapor deposition: bandgap engineering and field effect transistors. Adv. Funct. Mater. 27, 1606469 ( 2017). https://doi.org/10.1002/adfm.201606469
|
57. |
G. Shao, X.-X. Xue, B. Wu, Y.-C. Lin, M. Ouzounian et al., Template-assisted synthesis of metallic 1T’-Sn 0.3W 0.7S 2 nanosheets for hydrogen evolution reaction. Adv. Funct. Mater. 30, 1906069 ( 2020). https://doi.org/10.1002/adfm.201906069
|
58. |
X. Li, M.-W. Lin, L. Basile, S.M. Hus, A.A. Puretzky et al., Isoelectronic tungsten doping in monolayer MoSe 2 for carrier type modulation. Adv. Mater. 28, 8240-8247 ( 2016). https://doi.org/10.1002/adma.201601991
|
59. |
Q. Fu, L. Yang, W. Wang, A. Han, J. Huang et al., Synthesis and enhanced electrochemical catalytic performance of monolayer WS 2(1-x)Se 2x with a tunable band gap. Adv. Mater. 27, 4732-4738 ( 2015). https://doi.org/10.1002/adma.201500368
|
60. |
W.-J. Yin, H.-J. Tan, P.-J. Ding, B. Wen, X.-B. Li et al., Recent advances in low-dimensional Janus materials: theoretical and simulation perspectives. Mater. Adv. 2, 7543-7558 ( 2021). https://doi.org/10.1039/D1MA00660F
|
61. |
|
62. |
X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin et al., Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv. Mater. 27, 8035-8041 ( 2015). https://doi.org/10.1002/adma.201503873
|
63. |
Y. Huang, H.-X. Deng, K. Xu, Z.-X. Wang, Q.-S. Wang et al., Highly sensitive and fast phototransistor based on large size CVD-grown SnS 2 nanosheets. Nanoscale 7, 14093-14099 ( 2015). https://doi.org/10.1039/C5NR04174K
|
64. |
P. Perumal, R.K. Ulaganathan, R. Sankar, Y.-M. Liao, T.-M. Sun et al., Ultra-thin layered ternary single crystals [Sn(S xSe 1-x) 2] with bandgap engineering for high performance phototransistors on versatile substrates. Adv. Funct. Mater. 26, 3630-3638 ( 2016). https://doi.org/10.1002/adfm.201600081
|
65. |
A. Kutana, E.S. Penev, B.I. Yakobson, Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying. Nanoscale 6, 5820-5825 ( 2014). https://doi.org/10.1039/C4NR00177J
|
66. |
J. Kang, S. Tongay, J. Li, J. Wu, Monolayer semiconducting transition metal dichalcogenide alloys: stability and band bowing. J. Appl. Phys. 113, 143703 ( 2013). https://doi.org/10.1063/1.4799126
|
67. |
H.-P. Komsa, A.V. Krasheninnikov, Two-dimensional transition metal dichalcogenide alloys: stability and electronic properties. J. Phys. Chem. Lett. 3, 3652-3656 ( 2012). https://doi.org/10.1021/jz301673x
|
68. |
Z. Hemmat, J. Cavin, A. Ahmadiparidari, A. Ruckel, S. Rastegar et al., Quasi-binary transition metal dichalcogenide alloys: thermodynamic stability prediction, scalable synthesis, and application. Adv. Mater. 32, e1907041 ( 2020). https://doi.org/10.1002/adma.201907041
|
69. |
J.-H. Yang, B.I. Yakobson, Unusual negative formation enthalpies and atomic ordering in isovalent alloys of transition metal dichalcogenide monolayers. Chem. Mater. 30, 1547-1555 ( 2018). https://doi.org/10.1021/acs.chemmater.7b04527
|
70. |
M.C. Troparevsky, J.R. Morris, M. Daene, Y. Wang, A.R. Lupini et al., Beyond atomic sizes and hume-rothery rules: understanding and predicting high-entropy alloys. JOM 67, 2350-2363 ( 2015). https://doi.org/10.1007/s11837-015-1594-2
|
71. |
H. Taghinejad, D.A. Rehn, C. Muccianti, A.A. Eftekhar, M. Tian et al., Defect-mediated alloying of monolayer transition-metal dichalcogenides. ACS Nano 12, 12795-12804 ( 2018). https://doi.org/10.1021/acsnano.8b07920
|
72. |
W. Yao, Z. Kang, J. Deng, Y. Chen, Q. Song et al., Synthesis of 2D MoS 2(1-x)Se 2x semiconductor alloy by chemical vapor deposition. RSC Adv. 10, 42172-42177 ( 2020). https://doi.org/10.1039/d0ra07776c
|
73. |
Y. Tsai, Z. Chu, Y. Han, C.-P. Chuu, D. Wu et al., Tailoring semiconductor lateral multijunctions for giant photoconductivity enhancement. Adv. Mater. 29, 1703680 ( 2017). https://doi.org/10.1002/adma.201703680
|
74. |
B. Tang, J. Zhou, P. Sun, X. Wang, L. Bai et al., Phase-controlled synthesis of monolayer ternary telluride with a random local displacement of tellurium atoms. Adv. Mater. 31, e1900862 ( 2019). https://doi.org/10.1002/adma.201900862
|
75. |
J. Cavin, A. Ahmadiparidari, L. Majidi, A.S. Thind, S.N. Misal et al., 2D high-entropy transition metal dichalcogenides for carbon dioxide electrocatalysis. Adv. Mater. 33, e2100347 ( 2021). https://doi.org/10.1002/adma.202100347
|
76. |
Y. Chen, Z. Tian, X. Wang, N. Ran, C. Wang et al., 2D transition metal dichalcogenide with increased entropy for piezoelectric electronics. Adv. Mater. 34, e2201630 ( 2022). https://doi.org/10.1002/adma.202201630
|
77. |
J. Lin, J. Zhou, S. Zuluaga, P. Yu, M. Gu et al., Anisotropic ordering in 1T’ molybdenum and tungsten ditelluride layers alloyed with sulfur and selenium. ACS Nano 12, 894-901 ( 2018). https://doi.org/10.1021/acsnano.7b08782
|
78. |
D.O. Dumcenco, H. Kobayashi, Z. Liu, Y.-S. Huang, K. Suenaga, Visualization and quantification of transition metal atomic mixing in Mo 1-xW xS 2 single layers. Nat. Commun. 4, 1351 ( 2013). https://doi.org/10.1038/ncomms2351
|
79. |
S. Susarla, P. Manimunda, Y.M. Jaques, J.A. Hachtel, J.C. Idrobo et al., Strain-induced structural deformation study of 2D Mo xW (1-x)S 2. Adv. Mater. Interfaces 6, 1801262 2019). https://doi.org/10.1002/admi.201801262
|
80. |
C. Tan, W. Zhao, A. Chaturvedi, Z. Fei, Z. Zeng et al., Preparation of single-layer MoS 2xSe 2(1-x) and Mo xW 1-xS 2 nanosheets with high-concentration metallic 1T phase. Small 12, 1866-1874 ( 2016). https://doi.org/10.1002/smll.201600014
|
81. |
D. Hu, G. Xu, L. Xing, X. Yan, J. Wang et al., Two-dimensional semiconductors grown by chemical vapor transport. Angew. Chem. Int. Ed. 56, 3611-3615 ( 2017). https://doi.org/10.1002/anie.201700439
|
82. |
|
83. |
Q. Gong, L. Cheng, C. Liu, M. Zhang, Q. Feng et al., Ultrathin MoS 2(1-x)Se 2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction. ACS Catal. 5, 2213-2219 ( 2015). https://doi.org/10.1021/cs501970w
|
84. |
|
85. |
Z. Zheng, J. Yao, G. Yang, Centimeter-scale deposition of Mo 0.5W 0.5Se 2 alloy film for high-performance photodetectors on versatile substrates. ACS Appl. Mater. Interfaces 9, 14920-14928 ( 2017). https://doi.org/10.1021/acsami.7b02166
|
86. |
L. Zhang, T. Yang, X. He, W. Zhang, G. Vinai et al., Molecular beam epitaxy of two-dimensional vanadium-molybdenum diselenide alloys. ACS Nano 14, 11140-11149 ( 2020). https://doi.org/10.1021/acsnano.0c02124
|
87. |
X. Hu, Z. Hemmat, L. Majidi, J. Cavin, R. Mishra et al., Controlling nanoscale thermal expansion of monolayer transition metal dichalcogenides by alloy engineering. Small 16, e1905892 ( 2020). https://doi.org/10.1002/smll.201905892
|
88. |
G.K. Solanki, D.N. Gujarathi, M.P. Deshpande, D. Lakshminarayana, M.K. Agarwal, Transport property measurements in tungsten sulphoselenide single crystals grown by a CVT technique. Cryst. Res. Technol. 43, 179-185 ( 2008). https://doi.org/10.1002/crat.200711060
|
89. |
S.D. Karande, N. Kaushik, D.S. Narang, D. Late, S. Lodha, Thickness tunable transport in alloyed WSSe field effect transistors. Appl. Phys. Lett. 109, 142101 ( 2016). https://doi.org/10.1063/1.4964289
|
90. |
|
91. |
S. Witomska, T. Leydecker, A. Ciesielski, P. Samorì, Production and patterning of liquid phase-exfoliated 2D sheets for applications in optoelectronics. Adv. Funct. Mater. 29, 1901126 ( 2019). https://doi.org/10.1002/adfm.201901126
|
92. |
Z. Yang, H. Liang, X. Wang, X. Ma, T. Zhang et al., Atom-thin SnS 2-xSe x with adjustable compositions by direct liquid exfoliation from single crystals. ACS Nano 10, 755-762 ( 2016). https://doi.org/10.1021/acsnano.5b05823
|
93. |
I.S. Kwon, I.H. Kwak, J.Y. Kim, T.T. Debela, Y.C. Park et al., Concurrent vacancy and adatom defects of Mo 1-xNb xSe 2 alloy nanosheets enhance electrochemical performance of hydrogen evolution reaction. ACS Nano 15, 5467-5477 ( 2021). https://doi.org/10.1021/acsnano.1c00171
|
94. |
I.H. Kwak, T.T. Debela, I.S. Kwon, J. Seo, S.J. Yoo et al., Anisotropic alloying of Re 1-xMo xS 2 nanosheets to boost the electrochemical hydrogen evolution reaction. J. Mater. Chem. A 8, 25131-25141 ( 2020). https://doi.org/10.1039/D0TA09299A
|
95. |
W. Zhang, X. Li, T. Jiang, J. Song, Y. Lin et al., CVD synthesis of Mo (1-x)W xS 2 and MoS 2(1-x)Se 2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide. Nanoscale 7, 13554-13560 ( 2015). https://doi.org/10.1039/c5nr02515j
|
96. |
Z. Cai, B. Liu, X. Zou, H.-M. Cheng, Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 118, 6091-6133 ( 2018). https://doi.org/10.1021/acs.chemrev.7b00536
|
97. |
L. Tang, J. Tan, H. Nong, B. Liu, H.-M. Cheng, Chemical vapor deposition growth of two-dimensional compound materials: controllability, material quality, and growth mechanism. Acc. Mater. Res. 2, 36-47 ( 2021). https://doi.org/10.1021/accountsmr.0c00063
|
98. |
L. Fang, S. Tao, Z. Tian, K. Liu, X. Li et al., Controlled growth of transition metal dichalcogenide via thermogravimetric prediction of precursors vapor concentration. Nano Res. 14, 2867-2874 ( 2021). https://doi.org/10.1007/s12274-021-3347-6
|
99. |
F. Chen, L. Wang, X. Ji, Q. Zhang, Temperature-dependent two-dimensional transition metal dichalcogenide heterostructures: controlled synthesis and their properties. ACS Appl. Mater. Interfaces 9, 30821-30831 ( 2017). https://doi.org/10.1021/acsami.7b08313
|
100. |
S. Susarla, V. Kochat, A. Kutana, J.A. Hachtel, J.C. Idrobo et al., Phase segregation behavior of two-dimensional transition metal dichalcogenide binary alloys induced by dissimilar substitution. Chem. Mater. 29, 7431-7439 ( 2017). https://doi.org/10.1021/acs.chemmater.7b02407
|
101. |
D.B. Trivedi, G. Turgut, Y. Qin, M.Y. Sayyad, D. Hajra et al., Room-temperature synthesis of 2D Janus crystals and their heterostructures. Adv. Mater. 32, e2006320 ( 2020). https://doi.org/10.1002/adma.202006320
|
102. |
|
103. |
G. Xue, X. Sui, P. Yin, Z. Zhou, X. Li et al., Modularized batch production of 12-inch transition metal dichalcogenides by local element supply. Sci. Bull. 68, 1514-1521 ( 2023). https://doi.org/10.1016/j.scib.2023.06.037
|
104. |
Y. Zuo, C. Liu, L. Ding, R. Qiao, J. Tian et al., Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply. Nat. Commun. 13, 1007 ( 2022). https://doi.org/10.1038/s41467-022-28628-7
|
105. |
|
106. |
J. Lee, S. Pak, Y.W. Lee, Y. Park, A.R. Jang et al., Direct epitaxial synthesis of selective two-dimensional lateral heterostructures. ACS Nano 13, 13047-13055 ( 2019). https://doi.org/10.1021/acsnano.9b05722
|
107. |
X. Zhang, S. Xiao, L. Shi, H. Nan, X. Wan et al., Large-size Mo 1-xW xS 2 and W 1-xMo xS 2 (x = 0-0.5) monolayers by confined-space chemical vapor deposition. Appl. Surf. Sci. 457, 591-597 ( 2018). https://doi.org/10.1016/j.apsusc.2018.06.299
|
108. |
K. Ding, Q. Fu, H. Nan, X. Gu, K. Ostrikov et al., Controllable synthesis of WS 2(1-x)Se 2x monolayers with fast photoresponse by a facile chemical vapor deposition strategy. Mater. Sci. Eng. B 269, 115176 2021). https://doi.org/10.1016/j.mseb.2021.115176
|
109. |
P. Kang, H. Nan, X. Zhang, H. Mo, Z. Ni et al., Controllable synthesis of crystalline ReS 2(1-x)Se 2x monolayers on amorphous SiO 2/Si substrates with fast photoresponse. Adv. Opt. Mater. 8, 1901415 ( 2020). https://doi.org/10.1002/adom.201901415
|
110. |
Q. Feng, N. Mao, J. Wu, H. Xu, C. Wang et al., Growth of MoS 2(1-x)Se 2x (x = 0.41-1.00) monolayer alloys with controlled morphology by physical vapor deposition. ACS Nano 9, 7450-7455 ( 2015). https://doi.org/10.1021/acsnano.5b02506
|
111. |
|
112. |
S. Prucnal, A. Hashemi, M. Ghorbani-Asl, R. Hübner, J. Duan et al., Chlorine doping of MoSe 2 flakes by ion implantation. Nanoscale 13, 5834-5846 ( 2021). https://doi.org/10.1039/D0NR08935D
|
113. |
Q. Ma, M. Isarraraz, C.S. Wang, E. Preciado, V. Klee et al., Postgrowth tuning of the bandgap of single-layer molybdenum disulfide films by sulfur/selenium exchange. ACS Nano 8, 4672-4677 ( 2014). https://doi.org/10.1021/nn5004327
|
114. |
M. Ghorbani-Asl, S. Kretschmer, D.E. Spearot, A.V. Krasheninnikov, Two-dimensional MoS 2 under ion irradiation: from controlled defect production to electronic structure engineering. 2D Mater. 4, 025078 ( 2017). https://doi.org/10.1088/2053-1583/aa6b17
|
115. |
|
116. |
J. Yao, Z. Zheng, G. Yang, Promoting the performance of layered-material photodetectors by alloy engineering. ACS Appl. Mater. Interfaces 8, 12915-12924 ( 2016). https://doi.org/10.1021/acsami.6b03691
|
117. |
J.G. Song, G.H. Ryu, S.J. Lee, S. Sim, C.W. Lee et al., Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer. Nat. Commun. 6, 7817 ( 2015). https://doi.org/10.1038/ncomms8817
|
118. |
H.H. Huang, X. Fan, D.J. Singh, W.T. Zheng, Recent progress of TMD nanomaterials: phase transitions and applications. Nanoscale 12, 1247-1268 ( 2020). https://doi.org/10.1039/c9nr08313h
|
119. |
|
120. |
S.-Z. Yang, Y. Gong, P. Manchanda, Y.-Y. Zhang, G. Ye et al., Rhenium-doped and stabilized MoS 2 atomic layers with basal-plane catalytic activity. Adv. Mater. 30, e1803477 ( 2018). https://doi.org/10.1002/adma.201803477
|
121. |
I.S. Kwon, I.H. Kwak, G.M. Zewdie, S.J. Lee, J.Y. Kim et al., WSe 2-VSe 2 alloyed nanosheets to enhance the catalytic performance of hydrogen evolution reaction. ACS Nano 16, 12569-12579 ( 2022). https://doi.org/10.1021/acsnano.2c04113
|
122. |
K. Yang, X. Wang, H. Li, B. Chen, X. Zhang et al., Composition- and phase-controlled synthesis and applications of alloyed phase heterostructures of transition metal disulphides. Nanoscale 9, 5102-5109 ( 2017). https://doi.org/10.1039/c7nr01015j
|
123. |
Z. Wang, Y. Shen, Y. Ito, Y. Zhang, J. Du et al., Synthesizing 1T-1H two-phase Mo 1-xW xS 2 monolayers by chemical vapor deposition. ACS Nano 12, 1571-1579 ( 2018). https://doi.org/10.1021/acsnano.7b08149
|
124. |
Z. Wang, X. Zhao, Y. Yang, L. Qiao, L. Lv et al., Phase-controlled synthesis of monolayer W 1-xRe xS 2 alloy with improved photoresponse performance. Small 16, e2000852 ( 2020). https://doi.org/10.1002/smll.202000852
|
125. |
Y.-C. Lin, D.O. Dumcenco, Y.-S. Huang, K. Suenaga, Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS 2. Nat. Nanotechnol. 9, 391-396 ( 2014). https://doi.org/10.1038/nnano.2014.64
|
126. |
I.H. Kwak, I.S. Kwon, G.M. Zewdie, T.T. Debela, S.J. Lee et al., Polytypic phase transition of Nb 1-xV xSe 2 via colloidal synthesis and their catalytic activity toward hydrogen evolution reaction. ACS Nano 16, 4278-4288 ( 2022). https://doi.org/10.1021/acsnano.1c10301
|
127. |
K.Y. Ko, S. Lee, K. Park, Y. Kim, W.J. Woo et al., High-performance gas sensor using a large-area WS 2xSe 2-2x alloy for low-power operation wearable applications. ACS Appl. Mater. Interfaces 10, 34163-34171 ( 2018). https://doi.org/10.1021/acsami.8b10455
|
128. |
Y. Chen, J. Xi, D.O. Dumcenco, Z. Liu, K. Suenaga et al., Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. ACS Nano 7, 4610-4616 ( 2013). https://doi.org/10.1021/nn401420h
|
129. |
M. Zhang, J. Wu, Y. Zhu, D.O. Dumcenco, J. Hong et al., Two-dimensional molybdenum tungsten diselenide alloys: photoluminescence, Raman scattering, and electrical transport. ACS Nano 8, 7130-7137 ( 2014). https://doi.org/10.1021/nn5020566
|
130. |
F. Cui, Q. Feng, J. Hong, R. Wang, Y. Bai et al., Synthesis of large-size 1T’ ReS 2xSe 2(1-x) alloy monolayer with tunable bandgap and carrier type. Adv. Mater. 29, 1705015 ( 2017). https://doi.org/10.1002/adma.201705015
|
131. |
J. Kim, H. Seung, D. Kang, J. Kim, H. Bae et al., Wafer-scale production of transition metal dichalcogenides and alloy monolayers by nanocrystal conversion for large-scale ultrathin flexible electronics. Nano Lett. 21, 9153-9163 ( 2021). https://doi.org/10.1021/acs.nanolett.1c02991
|
132. |
Y.-R. Lin, W.-H. Cheng, M.H. Richter, J.S. DuChene, E.A. Peterson et al., Band edge tailoring in few-layer two-dimensional molybdenum sulfide/selenide alloys. J. Phys. Chem. C 124, 22893-22902 ( 2020). https://doi.org/10.1021/acs.jpcc.0c04719
|
133. |
|
134. |
L. Yang, Q. Fu, W. Wang, J. Huang, J. Huang et al., Large-area synthesis of monolayered MoS 2(1-x)Se 2x with a tunable band gap and its enhanced electrochemical catalytic activity. Nanoscale 7, 10490-10497 ( 2015). https://doi.org/10.1039/c5nr02652k
|
135. |
|
136. |
H. Masenda, L.M. Schneider, M. Adel Aly, S.J. Machchhar, A. Usman et al., Energy scaling of compositional disorder in ternary transition-metal dichalcogenide monolayers. Adv. Electron. Mater. 7, 2100196 ( 2021). https://doi.org/10.1002/aelm.202100196
|
137. |
B. Aslan, I.M. Datye, M.J. Mleczko, K. Sze Cheung, S. Krylyuk et al., Probing the optical properties and strain-tuning of ultrathin Mo 1-xW xTe 2. Nano Lett. 18, 2485-2491 ( 2018). https://doi.org/10.1021/acs.nanolett.8b00049
|
138. |
W. Zheng, B. Zheng, C. Yan, Y. Liu, X. Sun et al., Direct vapor growth of 2D vertical heterostructures with tunable band alignments and interfacial charge transfer behaviors. Adv. Sci. 6, 1802204 ( 2019). https://doi.org/10.1002/advs.201802204
|
139. |
|
140. |
X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang et al., Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 44, 2757-2785 ( 2015). https://doi.org/10.1039/c4cs00282b
|
141. |
C. Ramkumar, K.P. Jain, S.C. Abbi, Resonant Raman scattering probe of alloying effect in GaAs1-xPx ternary alloy semiconductors. Phys. Rev. B Condens. Matter 54, 7921-7928 ( 1996). https://doi.org/10.1103/physrevb.54.7921
|
142. |
Y. Chen, D.O. Dumcenco, Y. Zhu, X. Zhang, N. Mao et al., Composition-dependent Raman modes of Mo 1-xW xS 2 monolayer alloys. Nanoscale 6, 2833-2839 ( 2014). https://doi.org/10.1039/C3NR05630A
|
143. |
X. Gan, R. Lv, X. Wang, Z. Zhang, K. Fujisawa et al., Pyrolytic carbon supported alloying metal dichalcogenides as free-standing electrodes for efficient hydrogen evolution. Carbon 132, 512-519 ( 2018). https://doi.org/10.1016/j.carbon.2018.02.025
|
144. |
Y. Sun, K. Fujisawa, Z. Lin, Y. Lei, J.S. Mondschein et al., Low-temperature solution synthesis of transition metal dichalcogenide alloys with tunable optical properties. J. Am. Chem. Soc. 139, 11096-11105 ( 2017). https://doi.org/10.1021/jacs.7b04443
|
145. |
D. Wang, X. Zhang, G. Guo, S. Gao, X. Li et al., Large-area synthesis of layered HfS 2(1-x)Se 2x alloys with fully tunable chemical compositions and bandgaps. Adv. Mater. 30, e1803285 ( 2018). https://doi.org/10.1002/adma.201803285
|
146. |
A. Apte, A. Krishnamoorthy, J.A. Hachtel, S. Susarla, J.C. Idrobo et al., Telluride-based atomically thin layers of ternary two-dimensional transition metal dichalcogenide alloys. Chem. Mater. 30, 7262-7268 ( 2018). https://doi.org/10.1021/acs.chemmater.8b03444
|
147. |
|
148. |
Q. Fu, J. Han, X. Wang, P. Xu, T. Yao et al., 2D transition metal dichalcogenides: design, modulation, and challenges in electrocatalysis. Adv. Mater. 33, e1907818 ( 2021). https://doi.org/10.1002/adma.201907818
|
149. |
A.K. Chanchal, Garg, MREI-model calculations of optical phonons in layered mixed crystals of 2H-polytype of the series SnS 2-xSe x (0⩽x⩽2). Phys. B Condens. Matter 383, 188-193 ( 2006). https://doi.org/10.1016/j.physb.2006.03.009
|
150. |
|
151. |
I.F. Chang, S.S. Mitra, Application of a modified random-element-isodisplacement model to long-wavelength optic phonons of mixed crystals. Phys. Rev. 172, 924-933 ( 1968). https://doi.org/10.1103/physrev.172.924
|
152. |
|
153. |
|
154. |
|
155. |
B. Liu, Y. Ma, A. Zhang, L. Chen, A.N. Abbas et al., High-performance WSe 2 field-effect transistors via controlled formation of In-plane heterojunctions. ACS Nano 10, 5153-5160 ( 2016). https://doi.org/10.1021/acsnano.6b00527
|
156. |
H. Zhou, C. Wang, J.C. Shaw, R. Cheng, Y. Chen et al., Large area growth and electrical properties of p-type WSe 2 atomic layers. Nano Lett. 15, 709-713 ( 2015). https://doi.org/10.1021/nl504256y
|
157. |
K. Xu, A. Sharma, S. Kang, J. Kang, X. Hu et al., Heterogeneous electronic and photonic devices based on monolayer ternary telluride core/shell structures. Adv. Mater. 33, e2100343 ( 2021). https://doi.org/10.1002/adma.202100343
|
158. |
K.-C. Chen, C.-Y. Jian, Y.-J. Chen, S.-C. Lee, S.-W. Chang et al., Current enhancement and bipolar current modulation of top-gate transistors based on monolayer MoS 2 on three-layer W xMo 1-xS 2. ACS Appl. Mater. Interfaces 10, 24733-24738 ( 2018). https://doi.org/10.1021/acsami.8b06327
|
159. |
V.T. Vu, T.T.H. Vu, T.L. Phan, W.T. Kang, Y.R. Kim et al., One-step synthesis of NbSe 2/Nb-doped-WSe 2 metal/doped-semiconductor van der waals heterostructures for doping controlled ohmic contact. ACS Nano 15, 13031-13040 ( 2021). https://doi.org/10.1021/acsnano.1c02038
|
160. |
W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi et al., Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615-2622 ( 2013). https://doi.org/10.1021/nl4007479
|
161. |
H. Tian, M.L. Chin, S. Najmaei, Q. Guo, F. Xia et al., Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Res. 9, 1543-1560 ( 2016). https://doi.org/10.1007/s12274-016-1034-9
|
162. |
H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan et al., Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 4, 2642 ( 2013). https://doi.org/10.1038/ncomms3642
|
163. |
Y.R. Lim, J.K. Han, Y. Yoon, J.B. Lee, C. Jeon et al., Atomic-level customization of 4 in transition metal dichalcogenide multilayer alloys for industrial applications. Adv. Mater. 31, e1901405 ( 2019). https://doi.org/10.1002/adma.201901405
|
164. |
H. Xu, J. Zhu, G. Zou, W. Liu, X. Li et al., Spatially bandgap-graded MoS 2(1-x)Se 2x homojunctions for self-powered visible-near-infrared phototransistors. Nano-Micro Lett. 12, 26 ( 2020). https://doi.org/10.1007/s40820-019-0361-2
|
165. |
P. Chauhan, G.K. Solanki, A.B. Patel, K. Patel, P. Pataniya et al., Tunable and anisotropic photoresponse of layered Re 0.2Sn 0.8Se 2 ternary alloy. Sol. Energy Mater. Sol. Cells 200, 109936 2019). https://doi.org/10.1016/j.solmat.2019.109936
|
166. |
J. Ye, K. Liao, X. Ge, Z. Wang, Y. Wang et al., Narrowing bandgap of HfS 2 by Te substitution for short-wavelength infrared photodetection. Adv. Opt. Mater. 9, 2002248 ( 2021). https://doi.org/10.1002/adom.202002248
|
167. |
T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch et al., Identification of active edge sites for electrochemical H 2 evolution from MoS2 nanocatalysts. Science 317, 100-102 ( 2007). https://doi.org/10.1126/science.1141483
|
168. |
W. Xu, S. Li, S. Zhou, J.K. Lee, S. Wang et al., Large dendritic monolayer MoS 2 grown by atmospheric pressure chemical vapor deposition for electrocatalysis. ACS Appl. Mater. Interfaces 10, 4630-4639 ( 2018). https://doi.org/10.1021/acsami.7b14861
|
169. |
Z. Lai, A. Chaturvedi, Y. Wang, T.H. Tran, X. Liu et al., Preparation of 1T’-phase ReS 2xSe 2(1-x) (x = 0-1) nanodots for highly efficient electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 140, 8563-8568 ( 2018). https://doi.org/10.1021/jacs.8b04513
|
170. |
Y. Lei, S. Pakhira, K. Fujisawa, X. Wang, O.O. Iyiola et al., Low-temperature synthesis of heterostructures of transition metal dichalcogenide alloys (W xMo 1-xS 2) and graphene with superior catalytic performance for hydrogen evolution. ACS Nano 11, 5103-5112 ( 2017). https://doi.org/10.1021/acsnano.7b02060
|
171. |
J. Xu, X. Li, W. Liu, Y. Sun, Z. Ju et al., Carbon dioxide electroreduction into syngas boosted by a partially delocalized charge in molybdenum sulfide selenide alloy monolayers. Angew. Chem. Int. Ed. 56, 9121-9125 ( 2017). https://doi.org/10.1002/anie.201704928
|
172. |
G. Shao, Y. Lu, J. Hong, X.-X. Xue, J. Huang et al., Seamlessly splicing metallic Sn xMo 1-xS 2 at MoS 2 edge for enhanced photoelectrocatalytic performance in microreactor. Adv. Sci. 7, 2002172 ( 2020). https://doi.org/10.1002/advs.202002172
|
173. |
F. Li, W. Wei, H. Wang, B. Huang, Y. Dai et al., Intrinsic electric field-induced properties in Janus MoSSe van der waals structures. J. Phys. Chem. Lett. 10, 559-565 ( 2019). https://doi.org/10.1021/acs.jpclett.8b03463
|
174. |
|
175. |
|
176. |
C. Zhang, Y. Nie, S. Sanvito, A. Du, First-principles prediction of a room-temperature ferromagnetic Janus VSSe monolayer with piezoelectricity, ferroelasticity, and large valley polarization. Nano Lett. 19, 1366-1370 ( 2019). https://doi.org/10.1021/acs.nanolett.8b05050
|
177. |
J. Liang, W. Wang, H. Du, A. Hallal, K. Garcia et al., Very large Dzyaloshinskii-Moriya interaction in two-dimensional Janus manganese dichalcogenides and its application to realize skyrmion states. Phys. Rev. B 101, 184401 2020). https://doi.org/10.1103/physrevb.101.184401
|
178. |
A.C. Riis-Jensen, T. Deilmann, T. Olsen, K.S. Thygesen, Classifying the electronic and optical properties of Janus monolayers. ACS Nano 13, 13354-13364 ( 2019). https://doi.org/10.1021/acsnano.9b06698
|
179. |
S. Haastrup, M. Strange, M. Pandey, T. Deilmann, P.S. Schmidt et al., The computational 2D materials database: high-throughput modeling and discovery of atomically thin crystals. 2D Mater. 5, 042002 ( 2018). https://doi.org/10.1088/2053-1583/aacfc1
|
180. |
M.N. Gjerding, A. Taghizadeh, A. Rasmussen, S. Ali, F. Bertoldo et al., Recent progress of the computational 2D materials database (C2DB). 2D Mater. 8, 044002 ( 2021). https://doi.org/10.1088/2053-1583/ac1059
|
181. |
|
182. |
Y.-C. Lin, C. Liu, Y. Yu, E. Zarkadoula, M. Yoon et al., Low energy implantation into transition-metal dichalcogenide monolayers to form Janus structures. ACS Nano 14, 3896-3906 ( 2020). https://doi.org/10.1021/acsnano.9b10196
|
183. |
|
184. |
|
185. |
S. Jia, A. Bandyopadhyay, H. Kumar, J. Zhang, W. Wang et al., Biomolecular sensing by surface-enhanced Raman scattering of monolayer Janus transition metal dichalcogenide. Nanoscale 12, 10723-10729 ( 2020). https://doi.org/10.1039/D0NR00300J
|
186. |
W.-J. Yin, B. Wen, G.-Z. Nie, X.-L. Wei, L.-M. Liu, Tunable dipole and carrier mobility for a few layer Janus MoSSe structure. J. Mater. Chem. C 6, 1693-1700 ( 2018). https://doi.org/10.1039/C7TC05225A
|
187. |
M. Idrees, H.U. Din, R. Ali, G. Rehman, T. Hussain et al., Optoelectronic and solar cell applications of Janus monolayers and their van der Waals heterostructures. Phys. Chem. Chem. Phys. 21, 18612-18621 ( 2019). https://doi.org/10.1039/C9CP02648G
|
188. |
S. Susarla, A. Kutana, J.A. Hachtel, V. Kochat, A. Apte et al., Quaternary 2D transition metal dichalcogenides (TMDs) with tunable bandgap. Adv. Mater. 29, 1702457 ( 2017). https://doi.org/10.1002/adma.201702457
|
189. |
|
190. |
I.S. Kwon, S.J. Lee, J.Y. Kim, I.H. Kwak, G.M. Zewdie et al., Composition-tuned (MoWV)Se 2 ternary alloy nanosheets as excellent hydrogen evolution reaction electrocatalysts. ACS Nano 17, 2968-2979 ( 2023). https://doi.org/10.1021/acsnano.2c11528
|
191. |
T. Joseph, M. Ghorbani-Asl, A.G. Kvashnin, K.V. Larionov, Z.I. Popov et al., Nonstoichiometric phases of two-dimensional transition-metal dichalcogenides: from chalcogen vacancies to pure metal membranes. J. Phys. Chem. Lett. 10, 6492-6498 ( 2019). https://doi.org/10.1021/acs.jpclett.9b02529
|
192. |
|
193. |
B. An, Y. Ma, F. Chu, X. Li, Y. Wu et al., Growth of centimeter scale Nb 1-xW xSe 2 monolayer film by promoter assisted liquid phase chemical vapor deposition. Nano Res. 15, 2608-2615 ( 2022). https://doi.org/10.1007/s12274-021-3825-x
|
194. |
S. Park, S.J. Yun, Y.I. Kim, J.H. Kim, Y.M. Kim et al., Tailoring domain morphology in monolayer NbSe 2 and W xNb 1-xSe 2 heterostructure. ACS Nano 14, 8784-8792 ( 2020). https://doi.org/10.1021/acsnano.0c03382
|
195. |
X. Li, F. Cui, Q. Feng, G. Wang, X. Xu et al., Controlled growth of large-area anisotropic ReS2 atomic layer and its photodetector application. Nanoscale 8, 18956-18962 ( 2016). https://doi.org/10.1039/C6NR07233J
|
196. |
F. Cui, X. Li, Q. Feng, J. Yin, L. Zhou et al., Epitaxial growth of large-area and highly crystalline anisotropic ReSe2 atomic layer. Nano Res. 10, 2732-2742 ( 2017). https://doi.org/10.1007/s12274-017-1477-7
|
197. |
|
198. |
S.G. Yi, S.H. Kim, S. Park, D. Oh, H.Y. Choi et al., Mo1-xWxSe2-based Schottky junction photovoltaic cells. ACS Appl. Mater. Interfaces 8, 33811-33820 ( 2016). https://doi.org/10.1021/acsami.6b11768
|
199. |
K.C. Kwon, T.H. Lee, S. Choi, K.S. Choi, S.O. Gim et al., Synthesis of atomically thin alloyed molybdenum-tungsten disulfides thin films as hole transport layers in organic light-emitting diodes. Appl. Surf. Sci. 541, 148529 ( 2021). https://doi.org/10.1016/j.apsusc.2020.148529
|
200. |
R. Yang, L. Liu, S. Feng, Y. Liu, S. Li et al., One-step growth of spatially graded Mo 1-xW xS 2 monolayers with a wide span in composition (from x = 0 to 1) at a large scale. ACS Appl. Mater. Interfaces 11, 20979-20986 ( 2019). https://doi.org/10.1021/acsami.9b03608
|