1. |
M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78-81 ( 2014). https://doi.org/10.1038/nature13970
|
2. |
M.R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 2017). https://doi.org/10.1038/nenergy.2017.105
|
3. |
|
4. |
Y. Chen, X. Xie, X. Xin, Z.-R. Tang, Y.-J. Xu, Ti 3C 2T x-based three-dimensional hydrogel by a graphene oxide-assisted self-convergence process for enhanced photoredox catalysis. ACS Nano 13, 295-304 ( 2019). https://doi.org/10.1021/acsnano.8b06136
|
5. |
Y. Ma, N. Liu, L. Li, X. Hu, Z. Zou et al., A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 8, 1207 ( 2017). https://doi.org/10.1038/s41467-017-01136-9
|
6. |
Z. Yang, S. Lv, Y. Zhang, J. Wang, L. Jiang et al., Self-assembly 3D porous crumpled MXene spheres as efficient gas and pressure sensing material for transient all-MXene sensors. Nano-Micro Lett. 14, 56 ( 2022). https://doi.org/10.1007/s40820-022-00796-7
|
7. |
|
8. |
S. Liu, Q. Gao, K. Hou, Z. Li, J. Wang et al., Solvent-free covalent MXene nanofluid: a new lubricant combining the characteristics of solid and liquid lubricants. Chem. Eng. J. 462, 142238 ( 2023). https://doi.org/10.1016/j.cej.2023.142238
|
9. |
|
10. |
X. Wu, T. Tu, Y. Dai, P. Tang, Y. Zhang et al., Direct ink writing of highly conductive MXene frames for tunable electromagnetic interference shielding and electromagnetic wave-induced thermochromism. Nano-Micro Lett. 13, 148 ( 2021). https://doi.org/10.1007/s40820-021-00665-9
|
11. |
Y.-Z. Zhang, Y. Wang, Q. Jiang, J.K. El-Demellawi, H. Kim et al., MXene printing and patterned coating for device applications. Adv. Mater. 32, e1908486 ( 2020). https://doi.org/10.1002/adma.201908486
|
12. |
|
13. |
M.-Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori et al., Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29, 1702410 ( 2017). https://doi.org/10.1002/adma.201702410
|
14. |
F. Song, J. Hu, G. Li, J. Wang, S. Chen et al., Room-temperature assembled MXene-based aerogels for high mass-loading sodium-ion storage. Nano-Micro Lett. 14, 37 ( 2021). https://doi.org/10.1007/s40820-021-00781-6
|
15. |
|
16. |
|
17. |
K. Sano, N. Igarashi, Y. Ebina, T. Sasaki, T. Hikima et al., A mechanically adaptive hydrogel with a reconfigurable network consisting entirely of inorganic nanosheets and water. Nat. Commun. 11, 6026 ( 2020). https://doi.org/10.1038/s41467-020-19905-4
|
18. |
C. Luo, W. Lv, C. Qi, L. Zhong, Z.-Z. Pan et al., Realizing ultralow concentration gelation of graphene oxide with artificial interfaces. Adv. Mater. 31, e1805075 ( 2019). https://doi.org/10.1002/adma.201805075
|
19. |
H.-P. Cong, X.-C. Ren, P. Wang, S.-H. Yu, Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6, 2693-2703 ( 2012). https://doi.org/10.1021/nn300082k
|
20. |
|
21. |
Y. Yang, H. Sun, B. Zhang, L. Hu, L. Xu et al., Hydrogels totally from inorganic nanosheets and water with mechanical robustness, self-healing, controlled lubrication and anti-corrosion. Nano Res. 16, 1533-1544 ( 2023). https://doi.org/10.1007/s12274-022-4730-7
|
22. |
T. Shang, Z. Lin, C. Qi, X. Liu, P. Li et al., 3D macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 29, 1903960 ( 2019). https://doi.org/10.1002/adfm.201903960
|
23. |
Z. Fan, J. Jin, C. Li, J. Cai, C. Wei et al., 3D-printed Zn-ion hybrid capacitor enabled by universal divalent cation-gelated additive-free Ti 3C 2 MXene ink. ACS Nano 15, 3098-3107 ( 2021). https://doi.org/10.1021/acsnano.0c09646
|
24. |
R. Bian, R. Lin, G. Wang, G. Lu, W. Zhi et al., 3D assembly of Ti 3C 2-MXene directed by water/oil interfaces. Nanoscale 10, 3621-3625 ( 2018). https://doi.org/10.1039/c7nr07346a
|
25. |
G. Shi, Y. Zhu, M. Batmunkh, M. Ingram, Y. Huang et al., Cytomembrane-inspired MXene ink with amphiphilic surfactant for 3D printed microsupercapacitors. ACS Nano 16, 14723-14736 ( 2022). https://doi.org/10.1021/acsnano.2c05445
|
26. |
J. Orangi, F. Hamade, V.A. Davis, M. Beidaghi, 3D printing of additive-free 2D Ti 3C 2T x (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities. ACS Nano 14, 640-650 ( 2020). https://doi.org/10.1021/acsnano.9b07325
|
27. |
L. Ding, D. Xiao, Z. Lu, J. Deng, Y. Wei et al., Oppositely charged Ti 3C 2T x MXene membranes with 2D nanofluidic channels for osmotic energy harvesting. Angew. Chem. Int. Ed. 132, 8798-8804 ( 2020). https://doi.org/10.1002/ange.201915993
|
28. |
Y. Yang, J. Wang, Y. Yang, A. Chen, J. Wang et al., Low-load MXene nanosheet/melamine composite sponges for enhanced electromagnetic interference shielding. ACS Appl. Nano Mater. 6, 10953-10959 ( 2023). https://doi.org/10.1021/acsanm.3c01723
|
29. |
L. Yin, Y. Yang, H. Yang, H. Kang, J. Wang et al., Rapid foaming of dense MXene films induced by acid-base neutralization reaction. Cell Rep. Phys. Sci. 4, 101421 ( 2023). https://doi.org/10.1016/j.xcrp.2023.101421
|
30. |
|
31. |
L. Xu, L. Feng, R. Dong, J. Hao, S. Dong, Transfection efficiency of DNA enhanced by association with salt-free catanionic vesicles. Biomacromolecules 14, 2781-2789 ( 2013). https://doi.org/10.1021/bm400616y
|
32. |
L. Xu, L. Feng, S. Dong, J. Hao, Magnetic controlling of migration of DNA and proteins using one-step modified gold nanoparticles. Chem. Commun. 51, 9257-9260 ( 2015). https://doi.org/10.1039/C5CC01738F
|
33. |
L.J. Michot, I. Bihannic, S. Maddi, S.S. Funari, C. Baravian et al., Liquid-crystalline aqueous clay suspensions. Proc. Natl. Acad. Sci. U.S.A. 103, 16101-16104 ( 2006). https://doi.org/10.1073/pnas.0605201103
|
34. |
M.D. Mourad, D.V. Byelov, A.V. Petukhov, H.W. Lekkerkerker, Structure of the repulsive gel/glass in suspensions of charged colloidal platelets. J. Phys.: Condens. Matter 20, 494201 2008). https://doi.org/10.1088/0953-8984/20/49/494201
|
35. |
Z. Deng, L. Li, P. Tang, C. Jiao, Z.Z. Yu et al., Controllable surface-grafted MXene inks for electromagnetic wave modulation and infrared anti-counterfeiting applications. ACS Nano 16, 16976-16986 ( 2022). https://doi.org/10.1021/acsnano.2c07084
|
36. |
|
37. |
Y. Bai, Q. Yu, J. Zhang, M. Cai, Y. Liang et al., Soft-nanocomposite lubricants of supramolecular gel with carbon nanotubes. J. Mater. Chem. A 7, 7654-7663 ( 2019). https://doi.org/10.1039/C8TA11051D
|
38. |
Y. Bai, C. Zhang, Q. Yu, J. Zhang, M. Zhang et al., Supramolecular PFPE gel lubricant with anti-creep capability under irradiation conditions at high vacuum. Chem. Eng. J. 409, 128120 ( 2021). https://doi.org/10.1016/j.cej.2020.128120
|
39. |
|
40. |
|
41. |
H. Ma, J. Wang, J. Wang, K. Shang, Y. Yang et al., Blade-coated Ti 3C 2T MXene films for pseudocapacitive energy storage and infrared stealth. Diam. Relat. Mater. 131, 109587 ( 2023). https://doi.org/10.1016/j.diamond.2022.109587
|
42. |
|
43. |
D. Zhao, R. Zhao, S. Dong, X. Miao, Z. Zhang et al., Alkali-induced 3D crinkled porous Ti 3C 2 MXene architectures coupled with NiCoP bimetallic phosphide nanoparticles as anodes for high-performance sodium-ion batteries. Energy Environ. Sci. 12, 2422-2432 ( 2019). https://doi.org/10.1039/C9EE00308H
|
44. |
H. Chen, Y. Wen, Y. Qi, Q. Zhao, L. Qu et al., Pristine titanium carbide MXene films with environmentally stable conductivity and superior mechanical strength. Adv. Funct. Mater. 30, 1906996 ( 2020). https://doi.org/10.1002/adfm.201906996
|
45. |
W. Xing, C. Liu, Z. Zhou, L. Zhang, J. Zhou et al., Superior CO 2 uptake of N-doped activated carbon through hydrogen-bonding interaction. Energy Environ. Sci. 5, 7323-7327 ( 2012). https://doi.org/10.1039/C2EE21653A
|
46. |
H. Hong, H.Y. Kim, W.I. Cho, H.C. Song, H.C. Ham et al., Surface-functionalized three-dimensional MXene supports to boost the hydrogen evolution activity of Pt catalysts in alkaline media. J. Mater. Chem. A 11, 5328-5336 ( 2023). https://doi.org/10.1039/D2TA08852E
|
47. |
|
48. |
Z. Zhang, C. Qin, H. Feng, Y. Xiang, B. Yu et al., Design of large-span stick-slip freely switchable hydrogels via dynamic multiscale contact synergy. Nat. Commun. 13, 6964 ( 2022). https://doi.org/10.1038/s41467-022-34816-2
|
49. |
|
50. |
|
51. |
Z. Xue, X. Li, X. Chen, C. Huang, H. Ye et al., Mechanical and tribological performances enhanced by self-assembled structures. Adv. Mater. 32, e2002004 ( 2020). https://doi.org/10.1002/adma.202002004
|
52. |
J. Guo, C. Zeng, P. Wu, G. Liu, F. Zhou et al., Surface-functionalized Ti 3C 2T x MXene as a kind of efficient lubricating additive for supramolecular gel. ACS Appl. Mater. Interfaces 14, 52566-52573 ( 2022). https://doi.org/10.1021/acsami.2c17729
|
53. |
J. Guo, P. Wu, C. Zeng, W. Wu, X. Zhao et al., Fluoropolymer grafted Ti 3C 2T x MXene as an efficient lubricant additive for fluorine-containing lubricating oil. Tribol. Int. 170, 107500 ( 2022). https://doi.org/10.1016/j.triboint.2022.107500
|
54. |
J. Guo, Z. Shang, Y. Sun, C. Li, J. Xia et al., Surface-modified Ti 3C 2T x MXene as anti-wear and extreme pressure additive for PFPE supramolecular gel. Tribol. Int. 186, 108611 ( 2023). https://doi.org/10.1016/j.triboint.2023.108611
|
55. |
|
56. |
|
57. |
Y. Ru, R. Fang, Z. Gu, L. Jiang, M. Liu, Reversibly thermosecreting organogels with switchable lubrication and anti-icing performance. Angew. Chem. Int. Ed. 59, 11876-11880 ( 2020). https://doi.org/10.1002/anie.202004122
|
58. |
X. Yang, C. Cheng, Y. Wang, L. Qiu, D. Li, Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341, 534-537 ( 2013). https://doi.org/10.1126/science.1239089
|
59. |
T.S. Mathis, N. Kurra, X. Wang, D. Pinto, P. Simon et al., Energy storage data reporting in perspective—guidelines for interpreting the performance of electrochemical energy storage systems. Adv. Energy Mater. 9, 1902007 ( 2019). https://doi.org/10.1002/aenm.201902007
|
60. |
M. Hu, H. Zhang, T. Hu, B. Fan, X. Wang et al., Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem. Soc. Rev. 49, 6666-6693 ( 2020). https://doi.org/10.1039/d0cs00175a
|
61. |
T. Wang, H.C. Chen, F. Yu, X.S. Zhao, H. Wang, Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater. 16, 545-573 ( 2019). https://doi.org/10.1016/j.ensm.2018.09.007
|
62. |
|
63. |
H. Li, J. Liang, Recent development of printed micro-supercapacitors: printable materials, printing technologies, and perspectives. Adv. Mater. 32, e1805864 ( 2020). https://doi.org/10.1002/adma.201805864
|
64. |
A. Shahsafi, P. Roney, Y. Zhou, Z. Zhang, Y. Xiao et al., Temperature-independent thermal radiation. Proc. Natl. Acad. Sci. U.S.A. 116, 26402-26406 ( 2019). https://doi.org/10.1073/pnas.1911244116
|
65. |
K. Li, T.-H. Chang, Z. Li, H. Yang, F. Fu et al., Biomimetic MXene textures with enhanced light-to-heat conversion for solar steam generation and wearable thermal management. Adv. Energy Mater. 9, 1901687 ( 2019). https://doi.org/10.1002/aenm.201901687
|
|
|