1. |
|
2. |
|
3. |
|
4. |
|
5. |
|
6. |
U. Olsbye, S. Svelle, M. Bjørgen, P. Beato, T.V. Janssens et al., Conversion of methanol to hydrocarbons: How zeolite cavity and pore size controls product selectivity. Angew. Chem. Int. Ed. 51, 5810-5831 ( 2012). https://doi.org/10.1002/anie.201103657
|
7. |
Z. Chang, H. Yang, X. Zhu, P. He, H. Zhou, A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments. Nat. Commun. 13, 1510 ( 2022). https://doi.org/10.1038/s41467-022-29118-6
|
8. |
L. Shen, H.B. Wu, F. Liu, J.L. Brosmer, G. Shen et al., Creating lithium-ion electrolytes with biomimetic ionic channels in metal-organic frameworks. Adv. Mater. 30, e1707476 ( 2018). https://doi.org/10.1002/adma.201707476
|
9. |
B.M. Wiers, M.-L. Foo, N.P. Balsara, J.R. Long, A solid lithium electrolyte via addition of lithium isopropoxide to a metal-organic framework with open metal sites. J. Am. Chem. Soc. 133, 14522-14525 ( 2011). https://doi.org/10.1021/ja205827z
|
10. |
|
11. |
H. Chen, H. Tu, C. Hu, Y. Liu, D. Dong et al., Cationic covalent organic framework nanosheets for fast Li-ion conduction. J. Am. Chem. Soc. 140, 896-899 ( 2018). https://doi.org/10.1021/jacs.7b12292
|
12. |
X. Li, Q. Hou, W. Huang, H.-S. Xu, X. Wang et al., Solution-processable covalent organic framework electrolytes for all-solid-state Li-organic batteries. ACS Energy Lett. 5, 3498-3506 ( 2020). https://doi.org/10.1021/acsenergylett.0c01889
|
13. |
|
14. |
Y. Xu, L. Gao, Q. Liu, Q. Liu, Z. Chen et al., Segmental molecular dynamics boosts Li-ion conduction in metal-organic solid electrolytes for Li-metal batteries. Energy Storage Mater. 54, 854-862 ( 2023). https://doi.org/10.1016/j.ensm.2022.11.029
|
15. |
H. Yang, B. Liu, J. Bright, S. Kasani, J. Yang et al., A single-ion conducting UiO-66 metal-organic framework electrolyte for all-solid-state lithium batteries. ACS Appl. Energy Mater. 3, 4007-4013 ( 2020). https://doi.org/10.1021/acsaem.0c00410
|
16. |
F. Zhu, H. Bao, X. Wu, Y. Tao, C. Qin et al., High-performance metal-organic framework-based single ion conducting solid-state electrolytes for low-temperature lithium metal batteries. ACS Appl. Mater. Interfaces 11, 43206-43213 ( 2019). https://doi.org/10.1021/acsami.9b15374
|
17. |
|
18. |
Z. Chang, Y. Qiao, H. Yang, X. Cao, X. Zhu et al., Sustainable lithium-metal battery achieved by a safe electrolyte based on recyclable and low-cost molecular sieve. Angew. Chem. Int. Ed. 60, 15572-15581 ( 2021). https://doi.org/10.1002/anie.202104124
|
19. |
Z. Chang, H. Yang, Y. Qiao, X. Zhu, P. He et al., Tailoring the solvation sheath of cations by constructing electrode front-faces for rechargeable batteries. Adv. Mater. 34, e2201339 ( 2022). https://doi.org/10.1002/adma.202201339
|
20. |
H.J.S. Sand III., On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid. Lond. Edinb Dublin Philos. Mag. J. Sci. 1, 45-79 ( 1901). https://doi.org/10.1080/14786440109462590
|
21. |
P. Dong, X. Zhang, W. Hiscox, J. Liu, J. Zamora et al., Toward high-performance metal-organic-framework-based quasi-solid-state electrolytes: tunable structures and electrochemical properties. Adv. Mater. 35, e2211841 ( 2023). https://doi.org/10.1002/adma.202211841
|
22. |
M.L. Aubrey, R. Ameloot, B.M. Wiers, J.R. Long, Metal-organic frameworks as solid magnesium electrolytes. Energy Environ. Sci. 7, 667-671 ( 2014). https://doi.org/10.1039/C3EE43143F
|
23. |
W. He, D. Li, S. Guo, Y. Xiao, W. Gong et al., Redistribution of electronic density in channels of metal-Organic frameworks for high-performance quasi-solid lithium metal batteries. Energy Storage Mater. 47, 271-278 ( 2022). https://doi.org/10.1016/j.ensm.2022.02.003
|
24. |
T. Hou, W. Xu, X. Pei, L. Jiang, O.M. Yaghi et al., Ionic conduction mechanism and design of metal-organic framework based quasi-solid-state electrolytes. J. Am. Chem. Soc. 144, 13446-13450 ( 2022). https://doi.org/10.1021/jacs.2c03710
|
25. |
Z. Miao, F. Zhang, H. Zhao, M. Du, H. Li et al., Tailoring local electrolyte solvation structure via a mesoporous molecular sieve for dendrite-free zinc batteries. Adv. Funct. Mater. 32, 2111635 ( 2022). https://doi.org/10.1002/adfm.202111635
|
26. |
L. Han, Z. Wang, D. Kong, L. Yang, K. Yang et al., An ordered mesoporous silica framework based electrolyte with nanowetted interfaces for solid-state lithium batteries. J. Mater. Chem. A 6, 21280-21286 ( 2018). https://doi.org/10.1039/C8TA08875F
|
27. |
K. Wang, C. Li, Y. Liang, T. Han, H. Huang et al., Rational construction of defects in a metal-organic framework for highly efficient adsorption and separation of dyes. Chem. Eng. J. 289, 486-493 ( 2016). https://doi.org/10.1016/j.cej.2016.01.019
|
28. |
Z. Li, Q. Liu, L. Gao, Y. Xu, X. Kong et al., Quasi-solid electrolyte membranes with percolated metal-organic frameworks for practical lithium-metal batteries. J. Energy Chem. 52, 354-360 ( 2021). https://doi.org/10.1016/j.jechem.2020.04.013
|
29. |
|
30. |
G. Wang, J. Gao, Y. Fu, Z. Ren, J. Huang et al., Implantable composite fibres with Self-supplied H 2O 2 for localized chemodynamic therapy. Chem. Eng. J. 388, 124211 ( 2020). https://doi.org/10.1016/j.cej.2020.124211
|
31. |
L. Valenzano, B. Civalleri, S. Chavan, S. Bordiga, M.H. Nilsen et al., Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory. Chem. Mater. 23, 1700-1718 ( 2011). https://doi.org/10.1021/cm1022882
|
32. |
G.C. Shearer, S. Chavan, S. Bordiga, S. Svelle, U. Olsbye et al., Defect engineering: tuning the porosity and composition of the metal-organic framework UiO-66 via modulated synthesis. Chem. Mater. 28, 3749-3761 ( 2016). https://doi.org/10.1021/acs.chemmater.6b00602
|
33. |
S. Mohebbi, M. Shariatipour, B. Shafie, M.M. Amini, Encapsulation of tamoxifen citrate in functionalized mesoporous silica and investigation of its release. J. Drug Deliv. Sci. Technol. 62, 102406 ( 2021). https://doi.org/10.1016/j.jddst.2021.102406
|
34. |
|
35. |
L. Cai, H. Ying, P. Huang, Z. Zhang, H. Tan et al., In-situ grown Ti 3C 2T @CoSe 2 heterostructure as trapping-electrocatalyst for accelerating polysulfides conversion in lithium-sulfur battery. Chem. Eng. J. 474, 145862 ( 2023). https://doi.org/10.1016/j.cej.2023.145862
|
36. |
L. Liu, Z. Chen, J. Wang, D. Zhang, Y. Zhu et al., Imaging defects and their evolution in a metal-organic framework at sub-unit-cell resolution. Nat. Chem. 11, 622-628 ( 2019). https://doi.org/10.1038/s41557-019-0263-4
|
37. |
Q. Han, L. Cai, P. Huang, S. Liu, C. He et al., Fast ionic conducting hydroxyapatite solid electrolyte interphase enables ultra-stable zinc metal anodes. ACS Appl. Mater. Interfaces 15, 48316-48325 ( 2023). https://doi.org/10.1021/acsami.3c11649
|
38. |
Z. Wang, W. Huang, J. Hua, Y. Wang, H. Yi et al., An anionic-MOF-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li-S batteries. Small Meth. 4, 2000082 ( 2020). https://doi.org/10.1002/smtd.202000082
|
39. |
Y. Sun, T. Yang, H. Ji, J. Zhou, Z. Wang et al., Boosting the optimization of lithium metal batteries by molecular dynamics simulations: a perspective. Adv. Energy Mater. 10, 2002373 ( 2020). https://doi.org/10.1002/aenm.202002373
|
40. |
|
41. |
S. Yuan, J.L. Bao, J. Wei, Y. Xia, D.G. Truhlar et al., A versatile single-ion electrolyte with a Grotthuss-like Li conduction mechanism for dendrite-free Li metal batteries. Energy Environ. Sci. 12, 2741-2750 ( 2019). https://doi.org/10.1039/C9EE01473J
|
42. |
M.F. Döpke, J. Lützenkirchen, O.A. Moultos, B. Siboulet, J.-F. Dufrêche et al., Preferential adsorption in mixed electrolytes confined by charged amorphous silica. J. Phys. Chem. C 123, 16711-16720 ( 2019). https://doi.org/10.1021/acs.jpcc.9b02975
|
43. |
K. Qian, S. Seifert, R.E. Winans, T. Li, Understanding solvation behavior of the saturated electrolytes with small/wide-angle X-ray scattering and Raman spectroscopy. Energy Fuels 35, 19849-19855 ( 2021). https://doi.org/10.1021/acs.energyfuels.1c03328
|
44. |
L. Cao, D. Li, T. Deng, Q. Li, C. Wang, Hydrophobic organic-electrolyte-protected zinc anodes for aqueous zinc batteries. Angew. Chem. Int. Ed. 59, 19292-19296 ( 2020). https://doi.org/10.1002/anie.202008634
|
45. |
H. Gan, J. Wu, F. Zhang, R. Li, H. Liu, Uniform Zn 2+ distribution and deposition regulated by ultrathin hydroxyl-rich silica ion sieve in zinc metal anodes. Energy Storage Mater. 55, 264-271 ( 2023). https://doi.org/10.1016/j.ensm.2022.11.044
|
46. |
X.-X. Wang, X.-W. Chi, M.-L. Li, D.-H. Guan, C.-L. Miao et al., Metal-organic frameworks derived electrolytes build multiple wetting interfaces for integrated solid-state lithium-oxygen battery. Adv. Funct. Mater. 32, 2113235 ( 2022). https://doi.org/10.1002/adfm.202113235
|
47. |
B.G. Lee, Y.J. Park, Enhanced electrochemical performance of lithia/Li 2RuO 3 cathode by adding tris(trimethylsilyl)borate as electrolyte additive. Sci. Rep. 10, 13498 ( 2020). https://doi.org/10.1038/s41598-020-70333-2
|
48. |
H. Ma, D. Hwang, Y.J. Ahn, M.-Y. Lee, S. Kim et al., In situ interfacial tuning to obtain high-performance nickel-rich cathodes in lithium metal batteries. ACS Appl. Mater. Interfaces 12, 29365-29375 ( 2020). https://doi.org/10.1021/acsami.0c06830
|
49. |
H.Q. Pham, M. Mirolo, M. Tarik, M. El Kazzi, S. Trabesinger, Multifunctional electrolyte additive for improved interfacial stability in Ni-rich layered oxide full-cells. Energy Storage Mater. 33, 216-229 ( 2020). https://doi.org/10.1016/j.ensm.2020.08.026
|