1. |
Y. Cao, R. Wu, Y.-Y. Gao, Y. Zhou, J.-J. Zhu, Advances of electrochemical and electrochemiluminescent sensors based on covalent organic frameworks. Nano-Micro Lett. 16, 37 ( 2023). https://doi.org/10.1007/s40820-023-01249-5
|
2. |
J. Chang, C. Li, X. Wang, D. Li, J. Zhang et al., Quasi-three-dimensional cyclotriphosphazene-based covalent organic framework nanosheet for efficient oxygen reduction. Nano-Micro Lett. 15, 159 ( 2023). https://doi.org/10.1007/s40820-023-01111-8
|
3. |
|
4. |
T. Xue, Y. Yang, D. Yu, Q. Wali, Z. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15, 45 ( 2023). https://doi.org/10.1007/s40820-023-01017-5
|
5. |
|
6. |
W.Y. Lieu, D. Fang, K.J. Tay, X.L. Li, W.C. Chu et al., Progress on 3D-printed metal-organic frameworks with hierarchical structures. Adv. Mater. Technol. 7, 2200023 ( 2022). https://doi.org/10.1002/admt.202200023
|
7. |
Y. Li, G. Wen, J. Li, Q. Li, H. Zhang et al., Synthesis and shaping of metal-organic frameworks: a review. Chem. Commun. 58, 11488-11506 ( 2022). https://doi.org/10.1039/d2cc04190a
|
8. |
|
9. |
|
10. |
L. Zeng, S. Ling, D. Du, H. He, X. Li et al., Direct ink writing 3D printing for high-performance electrochemical energy storage devices: a minireview. Adv. Sci. 10, e2303716 ( 2023). https://doi.org/10.1002/advs.202303716
|
11. |
|
12. |
M.A.S.R. Saadi, A. Maguire, N.T. Pottackal, M.S.H. Thakur, M.M. Ikram et al., Direct ink writing: a 3D printing technology for diverse materials. Adv. Mater. 34, 2108855 ( 2022). https://doi.org/10.1002/adma.202108855
|
13. |
J. Dhainaut, M. Bonneau, R. Ueoka, K. Kanamori, S. Furukawa, Formulation of metal-organic framework inks for the 3D printing of robust microporous solids toward high-pressure gas storage and separation. ACS Appl. Mater. Interfaces 12, 10983-10992 ( 2020). https://doi.org/10.1021/acsami.9b22257
|
14. |
R. Zhou, Y. Wang, Z. Liu, Y. Pang, J. Chen et al., Digital light processing 3D-printed ceramic metamaterials for electromagnetic wave absorption. Nano-Micro Lett. 14, 122 ( 2022). https://doi.org/10.1007/s40820-022-00865-x
|
15. |
E. Lahtinen, R.L.M. Precker, M. Lahtinen, E. Hey-Hawkins, M. Haukka, Selective laser sintering of metal-organic frameworks: production of highly porous filters by 3D printing onto a polymeric matrix. ChemPlusChem 84, 222-225 ( 2019). https://doi.org/10.1002/cplu.201900081
|
16. |
G. Lipkowitz, T. Samuelsen, K. Hsiao, B. Lee, M.T. Dulay et al., Injection continuous liquid interface production of 3D objects. Sci. Adv. 8, eabq3917 ( 2022). https://doi.org/10.1126/sciadv.abq3917
|
17. |
N.M. Larson, J. Mueller, A. Chortos, Z.S. Davidson, D.R. Clarke et al., Rotational multimaterial printing of filaments with subvoxel control. Nature 613, 682-688 ( 2023). https://doi.org/10.1038/s41586-022-05490-7
|
18. |
|
19. |
Z. Ren, L. Gao, S.J. Clark, K. Fezzaa, P. Shevchenko et al., Machine learning-aided real-time detection of keyhole pore generation in laser powder bed fusion. Science 379, 89-94 ( 2023). https://doi.org/10.1126/science.add4667
|
20. |
Z. Lyu, J. Wang, Y. Chen, 4D printing: interdisciplinary integration of smart materials, structural design, and new functionality. Int. J. Extrem. Manuf. 5, 032011 ( 2023). https://doi.org/10.1088/2631-7990/ace090
|
21. |
Z. Lyu, J.J. Koh, G.J.H. Lim, D. Zhang, T. Xiong et al., Direct ink writing of programmable functional silicone-based composites for 4D printing applications. Interdiscip. Mater. 1, 507-516 ( 2022). https://doi.org/10.1002/idm2.12027
|
22. |
N. Maldonado, P. Amo-Ochoa, New promises and opportunities in 3D printable inks based on coordination compounds for the creation of objects with multiple applications. Chemistry 27, 2887-2907 ( 2021). https://doi.org/10.1002/chem.202002259
|
23. |
S. Mallakpour, E. Azadi, C.M. Hussain, MOF/COF-based materials using 3D printing technology: applications in water treatment, gas removal, biomedical, and electronic industries. New J. Chem. 45, 13247-13257 ( 2021). https://doi.org/10.1039/D1NJ02152D
|
24. |
E.R. Kearns, R. Gillespie, D.M. D’Alessandro, 3D printing of metal-organic framework composite materials for clean energy and environmental applications. J. Mater. Chem. A 9, 27252-27270 ( 2021). https://doi.org/10.1039/d1ta08777k
|
25. |
C.T. Hsieh, K. Ariga, L.K. Shrestha, S.H. Hsu, Development of MOF reinforcement for structural stability and toughness enhancement of biodegradable bioinks. Biomacromol 22, 1053-1064 ( 2021). https://doi.org/10.1021/acs.biomac.0c00920
|
26. |
L. Zhang, G. Ng, N. Kapoor-Kaushik, X. Shi, N. Corrigan et al., 2D porphyrinic metal-organic framework nanosheets as multidimensional photocatalysts for functional materials. Angew. Chem. Int. Ed. 60, 22664-22671 ( 2021). https://doi.org/10.1002/anie.202107457
|
27. |
C. Li, S. Deng, W. Feng, Y. Cao, J. Bai et al., A universal room-temperature 3D printing approach towards porous mof based dendrites inhibition hybrid solid-state electrolytes. Small 19, e2300066 ( 2023). https://doi.org/10.1002/smll.202300066
|
28. |
W. Zhu, Z. Zhou, Y. Huang, H. Liu, N. He et al., A versatile 3D-printable hydrogel for antichondrosarcoma, antibacterial, and tissue repair. J. Mater. Sci. Technol. 136, 200-211 ( 2023). https://doi.org/10.1016/j.jmst.2022.07.010
|
29. |
S. Pal, Y.-Z. Su, Y.-W. Chen, C.-H. Yu, C.-W. Kung et al., 3D printing of metal-organic framework-based ionogels: wearable sensors with colorimetric and mechanical responses. ACS Appl. Mater. Interfaces 14, 28247-28257 ( 2022). https://doi.org/10.1021/acsami.2c02690
|
30. |
A.I. Cherevko, I.A. Nikovskiy, Y.V. Nelyubina, K.M. Skupov, N.N. Efimov et al., 3D-printed porous magnetic carbon materials derived from metal-organic frameworks. Polymers 13, 3881 ( 2021). https://doi.org/10.3390/polym13223881
|
31. |
A.K. Mohammed, S. Usgaonkar, F. Kanheerampockil, S. Karak, A. Halder et al., Connecting microscopic structures, mesoscale assemblies, and macroscopic architectures in 3D-printed hierarchical porous covalent organic framework foams. J. Am. Chem. Soc. 142, 8252-8261 ( 2020). https://doi.org/10.1021/jacs.0c00555
|
32. |
Z. Lyu, G.J.H. Lim, R. Guo, Z. Kou, T. Wang et al., 3D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li-O 2 batteries. Adv. Funct. Mater. 29, 1806658 ( 2019). https://doi.org/10.1002/adfm.201806658
|
33. |
B. Yeskendir, J.-P. Dacquin, Y. Lorgouilloux, C. Courtois, S. Royer et al., From metal-organic framework powders to shaped solids: recent developments and challenges. Mater. Adv. 2, 7139-7186 ( 2021). https://doi.org/10.1039/d1ma00630d
|
34. |
S. Sultan, H.N. Abdelhamid, X. Zou, A.P. Mathew, CelloMOF: nanocellulose enabled 3D printing of metal-organic frameworks. Adv. Funct. Mater. 29, 1805372 ( 2019). https://doi.org/10.1002/adfm.201805372
|
35. |
A.D. Salazar-Aguilar, A. Quintanilla, P. López, C. Martínez, S.M. Vega-Díaz et al., 3D-printed Fe/γ-Al 2O 3 monoliths from MOF-based boehmite inks for the catalytic hydroxylation of phenol. ACS Appl. Mater. Interfaces 14, 920-932 ( 2022). https://doi.org/10.1021/acsami.1c19755
|
36. |
K.A. Evans, Z.C. Kennedy, B.W. Arey, J.F. Christ, H.T. Schaef et al., Chemically active, porous 3D-printed thermoplastic composites. ACS Appl. Mater. Interfaces 10, 15112-15121 ( 2018). https://doi.org/10.1021/acsami.7b17565
|
37. |
A. Pustovarenko, B. Seoane, E. Abou-Hamad, H.E. King, B.M. Weckhuysen et al., Rapid fabrication of MOF-based mixed matrix membranes through digital light processing. Mater. Adv. 2, 2739-2749 ( 2021). https://doi.org/10.1039/D1MA00023C
|
38. |
H. Thakkar, S. Eastman, Q. Al-Naddaf, A.A. Rownaghi, F. Rezaei, 3D-printed metal-organic framework monoliths for gas adsorption processes. ACS Appl. Mater. Interfaces 9, 35908-35916 ( 2017). https://doi.org/10.1021/acsami.7b11626
|
39. |
S. Lawson, M. Snarzyk, D. Hanify, A.A. Rownaghi, F. Rezaei, Development of 3D-printed polymer-MOF monoliths for CO 2 adsorption. Ind. Eng. Chem. Res. 59, 7151-7160 ( 2020). https://doi.org/10.1021/acs.iecr.9b05445
|
40. |
H. Thakkar, Q. Al-Naddaf, N. Legion, M. Hovis, A. Krishnamurthy et al., Adsorption of ethane and ethylene over 3D-printed ethane-selective monoliths. ACS Sustain. Chem. Eng. 6, 15228-15237 ( 2018). https://doi.org/10.1021/acssuschemeng.8b03685
|
41. |
J. Lefevere, B. Claessens, S. Mullens, G. Baron, J. Cousin-Saint-Remi et al., 3D-printed zeolitic imidazolate framework structures for adsorptive separations. ACS Appl. Nano Mater. 2, 4991-4999 ( 2019). https://doi.org/10.1021/acsanm.9b00934
|
42. |
B. Claessens, N. Dubois, J. Lefevere, S. Mullens, J. Cousin-Saint-Remi et al., 3D-printed ZIF-8 monoliths for biobutanol recovery. Ind. Eng. Chem. Res. 59, 8813-8824 ( 2020). https://doi.org/10.1021/acs.iecr.0c00453
|
43. |
Z. Lyu, G.J.H. Lim, R. Guo, Z. Pan, X. Zhang et al., 3D-printed electrodes for lithium metal batteries with high areal capacity and high-rate capability. Energy Storage Mater. 24, 336-342 ( 2020). https://doi.org/10.1016/j.ensm.2019.07.041
|
44. |
M.N. Channell, M. Sefa, J.A. Fedchak, J. Scherschligt, M. Bible et al., Toward 3D printed hydrogen storage materials made with ABS-MOF composites. Polym. Adv. Technol. 29, 867-873 ( 2018). https://doi.org/10.1002/pat.4197
|
45. |
L. Zhong, J. Chen, Z. Ma, H. Feng, S. Chen et al., 3D printing of metal-organic framework incorporated porous scaffolds to promote osteogenic differentiation and bone regeneration. Nanoscale 12, 24437-24449 ( 2020). https://doi.org/10.1039/d0nr06297a
|
46. |
|
47. |
F. Zou, J. Jiang, F. Lv, X. Xia, X. Ma, Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu(I)@ZIF-8 nanocomposite scaffolds for infected bone repair. J. Nanobiotechnology 18, 39 ( 2020). https://doi.org/10.1186/s12951-020-00594-6
|
48. |
R. Pei, L. Fan, F. Zhao, J. Xiao, Y. Yang et al., 3D-Printed metal-organic frameworks within biocompatible polymers as excellent adsorbents for organic dyes removal. J. Hazard. Mater. 384, 121418 ( 2020). https://doi.org/10.1016/j.jhazmat.2019.121418
|
49. |
C.A. Grande, R. Blom, V. Middelkoop, D. Matras, A. Vamvakeros et al., Multiscale investigation of adsorption properties of novel 3D printed UTSA-16 structures. Chem. Eng. J. 402, 126166 ( 2020). https://doi.org/10.1016/j.cej.2020.126166
|
50. |
L. Zhang, X. Shi, Z. Zhang, R.P. Kuchel, R. Namivandi-Zangeneh et al., Porphyrinic zirconium metal-organic frameworks (MOFs) as heterogeneous photocatalysts for PET-RAFT polymerization and stereolithography. Angew. Chem. Int. Ed. 60, 5489-5496 ( 2021). https://doi.org/10.1002/anie.202014208
|
51. |
T. Wu, Z. Ma, Y. He, X. Wu, B. Tang et al., A covalent black phosphorus/metal-organic framework hetero-nanostructure for high-performance flexible supercapacitors. Angew. Chem. Int. Ed. 60, 10366-10374 ( 2021). https://doi.org/10.1002/anie.202101648
|
52. |
J. Zhao, Y. Zhang, H. Lu, Y. Wang, X.D. Liu et al., Additive manufacturing of two-dimensional conductive metal-organic framework with multidimensional hybrid architectures for high-performance energy storage. Nano Lett. 22, 1198-1206 ( 2022). https://doi.org/10.1021/acs.nanolett.1c04367
|
53. |
A.J. Young, R. Guillet-Nicolas, E.S. Marshall, F. Kleitz, A.J. Goodhand et al., Direct ink writing of catalytically active UiO-66 polymer composites. Chem. Commun. 55, 2190-2193 ( 2019). https://doi.org/10.1039/C8CC10018G
|
54. |
|
55. |
Y. Liu, J. Yang, C. Tao, H. Lee, M. Chen et al., Meniscus-guided 3D microprinting of pure metal-organic frameworks with high gas-uptake performance. ACS Appl. Mater. Interfaces 14, 7184-7191 ( 2022). https://doi.org/10.1021/acsami.1c22582
|
56. |
M. Zhang, L. Li, Q. Lin, M. Tang, Y. Wu et al., Hierarchical-coassembly-enabled 3D-printing of homogeneous and heterogeneous covalent organic frameworks. J. Am. Chem. Soc. 141, 5154-5158 ( 2019). https://doi.org/10.1021/jacs.9b01561
|
57. |
H.N. Abdelhamid, S. Sultan, A.P. Mathew, 3D printing of cellulose/leaf-like zeolitic imidazolate frameworks (CelloZIF-L) for adsorption of carbon dioxide (CO 2) and heavy metal ions. Dalton Trans. 52, 2988-2998 ( 2023). https://doi.org/10.1039/d2dt04168e
|
58. |
P. Scholz, A. Ulbricht, Y. Joshi, C. Gollwitzer, S.M. Weidner, Microstructure of polymer-imprinted metal-organic frameworks determined by absorption edge tomography. Int. J. Mater. Res. 111, 55-64 ( 2020). https://doi.org/10.3139/146.111817
|
59. |
B. Chen, R. Davies, H. Chang, Y. Xia, Y. Zhu et al., In-situ synthesis of metal organic frameworks (MOFs)-PA 12 powders and their laser sintering into hierarchical porous lattice structures. Addit. Manuf. 38, 101774 ( 2021). https://doi.org/10.1016/j.addma.2020.101774
|
60. |
S. Lawson, A.-A. Alwakwak, A.A. Rownaghi, F. Rezaei, Gel-print-grow: a new way of 3D printing metal-organic frameworks. ACS Appl. Mater. Interfaces 12, 56108-56117 ( 2020). https://doi.org/10.1021/acsami.0c18720
|
61. |
C. Xu, Y. Ai, T. Zheng, C. Wang, Acoustic manipulation of breathing MOFs particles for self-folding composite films preparation. Sens. Actuat. A Phys. 315, 112288 ( 2020). https://doi.org/10.1016/j.sna.2020.112288
|
62. |
R. Li, S. Yuan, W. Zhang, H. Zheng, W. Zhu et al., 3D printing of mixed matrix films based on metal-organic frameworks and thermoplastic polyamide 12 by selective laser sintering for water applications. ACS Appl. Mater. Interfaces 11, 40564-40574 ( 2019). https://doi.org/10.1021/acsami.9b11840
|
63. |
X. Liu, G.J.H. Lim, Y. Wang, L. Zhang, D. Mullangi et al., Binder-free 3D printing of covalent organic framework (COF) monoliths for CO 2 adsorption. Chem. Eng. J. 403, 126333 ( 2021). https://doi.org/10.1016/j.cej.2020.126333
|
64. |
|
65. |
T. Ni, Y. Zhu, L. Hao, Y. Chen, T. Cheng, Preparation of photothermal-sensitive PDGF@ZIF-8-PDA@COL/PLGA-TCP composite scaffolds for bone defect repair. Mater. Des. 217, 110643 ( 2022). https://doi.org/10.1016/j.matdes.2022.110643
|
66. |
|
67. |
Z. Liu, X. Xia, W. Li, L. Xiao, X. Sun et al., In situ growth of Ca 2+-based metal-organic framework on CaSiO 3/ABS/TPU 3D skeleton for methylene blue removal. Materials 13, 4403 ( 2020). https://doi.org/10.3390/ma13194403
|
68. |
J. Yao, F. Dong, X. Xu, M. Wen, Z. Ji et al., Rational design and construction of monolithic ordered mesoporous Co 3O 4@SiO 2 catalyst by a novel 3D printed technology for catalytic oxidation of toluene. ACS Appl. Mater. Interfaces 14, 22170-22185 ( 2022). https://doi.org/10.1021/acsami.2c03850
|
69. |
|
70. |
W. Liu, O. Erol, D.H. Gracias, 3D printing of an In situ grown MOF hydrogel with tunable mechanical properties. ACS Appl. Mater. Interfaces 12, 33267-33275 ( 2020). https://doi.org/10.1021/acsami.0c08880
|
71. |
I. Pellejero, F. Almazán, M. Lafuente, M.A. Urbiztondo, M. Drobek et al., Functionalization of 3D printed ABS filters with MOF for toxic gas removal. J. Ind. Eng. Chem. 89, 194-203 ( 2020). https://doi.org/10.1016/j.jiec.2020.05.013
|
72. |
S. Waheed, M. Rodas, H. Kaur, N.L. Kilah, B. Paull et al., In-situ growth of metal-organic frameworks in a reactive 3D printable material. Appl. Mater. Today 22, 100930 ( 2021). https://doi.org/10.1016/j.apmt.2020.100930
|
73. |
Z. Shi, C. Xu, F. Chen, Y. Wang, L. Li et al., Renewable metal-organic-frameworks-coated 3D printing film for removal of malachite green. RSC Adv. 7, 49947-49952 ( 2017). https://doi.org/10.1039/C7RA10912A
|
74. |
J. Du, W. Liu, Z. Kang, B. Yu, D. Li et al., Hydrothermal deposition of PCN-224 on 3D-printed porous β-Ca 2SiO 4 scaffolds for bone regeneration. Adv. Eng. Mater. 24, 2101550 ( 2022). https://doi.org/10.1002/adem.202101550
|
75. |
C. Shu, C. Qin, L. Chen, Y. Wang, Z. Shi et al., Metal-organic framework functionalized bioceramic scaffolds with antioxidative activity for enhanced osteochondral regeneration. Adv. Sci. 10, e2206875 ( 2023). https://doi.org/10.1002/advs.202206875
|
76. |
Y. Ying, M.P. Browne, M. Pumera, Metal-organic-frameworks on 3D-printed electrodes: in situ electrochemical transformation towards the oxygen evolution reaction. Sustain. Energy Fuels 4, 3732-3738 ( 2020). https://doi.org/10.1039/d0se00503g
|
77. |
|
78. |
S. Lawson, Q. Al-Naddaf, A. Krishnamurthy, M.S. Amour, C. Griffin et al., UTSA-16 growth within 3D-printed co-Kaolin monoliths with high selectivity for CO 2/CH 4, CO 2/N 2, and CO 2/H 2 separation. ACS Appl. Mater. Interfaces 10, 19076-19086 ( 2018). https://doi.org/10.1021/acsami.8b05192
|
79. |
D. Liu, P. Jiang, X. Li, J. Liu, L. Zhou et al., 3D printing of metal-organic frameworks decorated hierarchical porous ceramics for high-efficiency catalytic degradation. Chem. Eng. J. 397, 125392 ( 2020). https://doi.org/10.1016/j.cej.2020.125392
|
80. |
|
81. |
K. Li, Y. de Rancourt, X. de Mimérand, J. Jin, J.G. Yi, Metal oxide (ZnO and TiO 2) and Fe-based metal-organic-framework nanoparticles on 3D-printed fractal polymer surfaces for photocatalytic degradation of organic pollutants. ACS Appl. Nano Mater. 3, 2830-2845 ( 2020). https://doi.org/10.1021/acsanm.0c00096
|
82. |
M. del Rio, M. Villar, S. Quesada, G.T. Palomino, L. Ferrer et al., Silver-functionalized UiO-66 metal-organic framework-coated 3D printed device for the removal of radioactive iodine from wastewaters. Appl. Mater. Today 24, 101130 ( 2021). https://doi.org/10.1016/j.apmt.2021.101130
|
83. |
A. Figuerola, D.A.V. Medina, A.J. Santos-Neto, C.P. Cabello, V. Cerdà et al., Metal-organic framework mixed-matrix coatings on 3D printed devices. Appl. Mater. Today 16, 21-27 ( 2019). https://doi.org/10.1016/j.apmt.2019.04.011
|
84. |
H.S. Far, M. Najafi, M. Hasanzadeh, M. Rabbani, Self-supported 3D-printed lattices containing MXene/metal-organic framework (MXOF) composite as an efficient adsorbent for wastewater treatment. ACS Appl. Mater. Interfaces 14, 44488-44497 ( 2022). https://doi.org/10.1021/acsami.2c13830
|
85. |
W. Wang, Y. Xiong, R. Zhao, X. Li, W. Jia, A novel hierarchical biofunctionalized 3D-printed porous Ti 6Al 4V scaffold with enhanced osteoporotic osseointegration through osteoimmunomodulation. J. Nanobiotechnology 20, 68 ( 2022). https://doi.org/10.1186/s12951-022-01277-0
|
86. |
H.S. Far, M. Najafi, M. Hasanzadeh, R. Rahimi, A 3D-printed hierarchical porous architecture of MOF@clay composite for rapid and highly efficient dye scavenging. New J. Chem. 46, 23351-23360 ( 2022). https://doi.org/10.1039/D2NJ05188E
|
87. |
Y. Jiang, X. Pan, M. Yao, L. Han, X. Zhang et al., Bioinspired adhesive and tumor microenvironment responsive nanoMOFs assembled 3D-printed scaffold for anti-tumor therapy and bone regeneration. Nano Today 39, 101182 ( 2021). https://doi.org/10.1016/J.NANTOD.2021.101182
|
88. |
Q. Xu, Z. Chen, Y. Zhang, X. Hu, F. Chen et al., Mussel-inspired bioactive 3D-printable poly(styrene-butadiene-styrene) and the in vitro assessment of its potential as cranioplasty implants. J. Mater. Chem. B 10, 3747-3758 ( 2022). https://doi.org/10.1039/d2tb00419d
|
89. |
S. Yuan, J. Zhu, Y. Li, Y. Zhao, J. Li et al., Structure architecture of micro/nanoscale ZIF-L on a 3D printed membrane for a superhydrophobic and underwater superoleophobic surface. J. Mater. Chem. A 7, 2723-2729 ( 2019). https://doi.org/10.1039/C8TA10249J
|
90. |
Z. Wang, J. Wang, M. Li, K. Sun, C.-J. Liu, Three-dimensional printed acrylonitrile butadiene styrene framework coated with Cu-BTC metal-organic frameworks for the removal of methylene blue. Sci. Rep. 4, 5939 ( 2014). https://doi.org/10.1038/srep05939
|
91. |
W. Dang, B. Ma, B. Li, Z. Huan, N. Ma et al., 3D printing of metal-organic framework nanosheets-structured scaffolds with tumor therapy and bone construction. Biofabrication 12, 025005 ( 2020). https://doi.org/10.1088/1758-5090/ab5ae3
|
92. |
R. Singh, G. Souillard, L. Chassat, Y. Gao, X. Mulet et al., Fabricating bioactive 3D metal-organic framework devices. Adv. Sustain. Syst. 4, 2000059 ( 2020). https://doi.org/10.1002/adsu.202000059
|
93. |
L. Wang, S. Ng, Jyoti, M. Pumera, Al 2O 3/covalent organic framework on 3D-printed nanocarbon electrodes for enhanced biomarker detection. ACS Appl. Nano Mater. 5, 9719-9727 ( 2022). https://doi.org/10.1021/acsanm.2c01937
|
94. |
|