1. |
|
2. |
J. Shamsi, A.S. Urban, M. Imran, L. De Trizio, L. Manna, Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 119(5), 3296-3348 ( 2019). https://doi.org/10.1021/acs.chemrev.8b00644
|
3. |
|
4. |
|
5. |
Y.-K. Wang, K. Singh, J.-Y. Li, Y. Dong, X.-Q. Wang et al., In situ inorganic ligand replenishment enables bandgap stability in mixed-halide perovskite quantum dot solids. Adv. Mater. 34(21), e2200854 ( 2022). https://doi.org/10.1002/adma.202200854
|
6. |
Y. Wang, C. Duan, X. Zhang, J. Sun, X. Ling et al., Electroluminescent solar cells based on CsPbI 3 perovskite quantum dots. Adv. Funct. Mater. 32(6), 2108615 ( 2022). https://doi.org/10.1002/adfm.202108615
|
7. |
A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore et al., Quantum dot-induced phase stabilization of α-CsPbI 3 perovskite for high-efficiency photovoltaics. Science 354(6308), 92-95 ( 2016). https://doi.org/10.1126/science.aag2700
|
8. |
W. Zhou, F. Sui, G. Zhong, G. Cheng, M. Pan et al., Lattice dynamics and thermal stability of cubic-phase CsPbI 3 quantum dots. J. Phys. Chem. Lett. 9(17), 4915-4920 ( 2018). https://doi.org/10.1021/acs.jpclett.8b02036
|
9. |
J.-S. Yao, J. Ge, K.-H. Wang, G. Zhang, B.-S. Zhu et al., Few-nanometer-sized α-CsPbI 3 quantum dots enabled by strontium substitution and iodide passivation for efficient red-light emitting diodes. J. Am. Chem. Soc. 141(5), 2069-2079 ( 2019). https://doi.org/10.1021/jacs.8b11447
|
10. |
L. Martínez-Sarti, S.H. Jo, Y.H. Kim, M. Sessolo, F. Palazon et al., Low-dimensional iodide perovskite nanocrystals enable efficient red emission. Nanoscale 11(27), 12793-12797 ( 2019). https://doi.org/10.1039/c9nr04520a
|
11. |
Y.-F. Lan, J.-S. Yao, J.-N. Yang, Y.-H. Song, X.-C. Ru et al., Spectrally stable and efficient pure red CsPbI 3 quantum dot light-emitting diodes enabled by sequential ligand post-treatment strategy. Nano Lett. 21(20), 8756-8763 ( 2021). https://doi.org/10.1021/acs.nanolett.1c03011
|
12. |
|
13. |
Y. Dong, Y.-K. Wang, F. Yuan, A. Johnston, Y. Liu et al., Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15, 668-674 ( 2020). https://doi.org/10.1038/s41565-020-0714-5
|
14. |
J. Pan, L.N. Quan, Y. Zhao, W. Peng, B. Murali et al., Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 28(39), 8718-8725 ( 2016). https://doi.org/10.1002/adma.201600784
|
15. |
G. Li, J. Huang, H. Zhu, Y. Li, J.-X. Tang et al., Surface ligand engineering for near-unity quantum yield inorganic halide perovskite QDs and high-performance QLEDs. Chem. Mater. 30(17), 6099-6107 ( 2018). https://doi.org/10.1021/acs.chemmater.8b02544
|
16. |
Y.-K. Wang, F. Yuan, Y. Dong, J.-Y. Li, A. Johnston et al., All-inorganic quantum-dot LEDs based on a phase-stabilized α-CsPbI 3 perovskite. Angew. Chem. Int. Ed. 60(29), 16164-16170 ( 2021). https://doi.org/10.1002/anie.202104812
|
17. |
H. Zhao, H. Chen, S. Bai, C. Kuang, X. Luo et al., High-brightness perovskite light-emitting diodes based on FAPbBr 3 nanocrystals with rationally designed aromatic ligands. ACS Energy Lett. 6(7), 2395-2403 ( 2021). https://doi.org/10.1021/acsenergylett.1c00812
|
18. |
A. Pan, B. He, X. Fan, Z. Liu, J.J. Urban et al., Insight into the ligand-mediated synthesis of colloidal CsPbBr 3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors. ACS Nano 10(8), 7943-7954 ( 2016). https://doi.org/10.1021/acsnano.6b03863
|
19. |
J. Shamsi, Z. Dang, P. Bianchini, C. Canale, F. Di Stasio et al., Colloidal synthesis of quantum confined single crystal CsPbBr 3 nanosheets with lateral size control up to the micrometer range. J. Am. Chem. Soc. 138(23), 7240-7243 ( 2016). https://doi.org/10.1021/jacs.6b03166
|
20. |
F. Haydous, J.M. Gardner, U.B. Cappel, The impact of ligands on the synthesis and application of metal halide perovskite nanocrystals. J. Mater. Chem. A 9(41), 23419-23443 ( 2021). https://doi.org/10.1039/d1ta05242j
|
21. |
S. Cho, J. Kim, S.M. Jeong, M.J. Ko, J.-S. Lee et al., High-voltage and green-emitting perovskite quantum dot solar cells via solvent miscibility-induced solid-state ligand exchange. Chem. Mater. 32(20), 8808-8818 ( 2020). https://doi.org/10.1021/acs.chemmater.0c02102
|
22. |
D. Jia, J. Chen, J. Qiu, H. Ma, M. Yu et al., Tailoring solvent-mediated ligand exchange for CsPbI 3 perovskite quantum dot solar cells with efficiency exceeding 16.5%. Joule 6(7), 1632-1653 ( 2022). https://doi.org/10.1016/j.joule.2022.05.007
|
23. |
Y. Sun, H. Zhang, K. Zhu, W. Ye, L. She et al., Research on the influence of polar solvents on CsPbBr 3 perovskite QDs. RSC Adv. 11(44), 27333-27337 ( 2021). https://doi.org/10.1039/d1ra04485k
|
24. |
D. Liu, Z. Shao, C. Li, S. Pang, Y. Yan et al., Structural properties and stability of inorganic CsPbI 3 perovskites. Small Struct. 2(3), 2000089 ( 2021). https://doi.org/10.1002/sstr.202000089
|
25. |
S. Kajal, J. Kim, Y.S. Shin, A.N. Singh, C.W. Myung et al., Unfolding the influence of metal doping on properties of CsPbI 3 perovskite. Small Methods 4(9), 2000296 ( 2020). https://doi.org/10.1002/smtd.202000296
|
26. |
|
27. |
F. Krieg, S.T. Ochsenbein, S. Yakunin, S. Ten Brinck, P. Aellen et al., Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: Zwitterionic capping ligands for improved durability and stability. ACS Energy Lett. 3(3), 641-646 ( 2018). https://doi.org/10.1021/acsenergylett.8b00035
|
28. |
J. De Roo, M. Ibáñez, P. Geiregat, G. Nedelcu, W. Walravens et al., Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10(2), 2071-2081 ( 2016). https://doi.org/10.1021/acsnano.5b06295
|
29. |
Y. Dong, T. Qiao, D. Kim, D. Parobek, D. Rossi et al., Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Lett. 18(6), 3716-3722 ( 2018). https://doi.org/10.1021/acs.nanolett.8b00861
|
30. |
S. Akhil, V.G.V. Dutt, N. Mishra, Completely amine-free open-atmospheric synthesis of high-quality cesium lead bromide (CsPbBr 3) perovskite nanocrystals. Chem. Eur. J. 26(71), 17195-17202 ( 2020). https://doi.org/10.1002/chem.202003891
|
31. |
L.C. Cass, M. Malicki, E.A. Weiss, The chemical environments of oleate species within samples of oleate-coated PbS quantum dots. Anal. Chem. 85(14), 6974-6979 ( 2013). https://doi.org/10.1021/ac401623a
|
32. |
L. Wu, Q. Zhong, D. Yang, M. Chen, H. Hu et al., Improving the stability and size tunability of cesium lead halide perovskite nanocrystals using trioctylphosphine oxide as the capping ligand. Langmuir 33(44), 12689-12696 ( 2017). https://doi.org/10.1021/acs.langmuir.7b02963
|
33. |
W. Zheng, Z. Li, C. Zhang, B. Wang, Q. Zhang et al., Stabilizing perovskite nanocrystals by controlling protective surface ligands density. Nano Res. 12, 1461-1465 ( 2019). https://doi.org/10.1007/s12274-019-2407-7
|