1. |
|
2. |
|
3. |
|
4. |
G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, T. Prodromakis, Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology 24, 384010 2013). https://doi.org/10.1088/0957-4484/24/38/384010
|
5. |
|
6. |
Y.-C. Chen, C.-Y. Lin, H. Cho, S. Kim, B. Fowler et al., Current-sweep operation on nonlinear selectorless RRAM for multilevel cell applications. J. Electron. Mater. 49, 3499-3503 ( 2020). https://doi.org/10.1007/s11664-020-07987-1
|
7. |
|
8. |
|
9. |
|
10. |
E.J. Fuller, S.T. Keene, A. Melianas, Z. Wang, S. Agarwal et al., Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 364, 570-574 ( 2019). https://doi.org/10.1126/science.aaw5581
|
11. |
|
12. |
M. Prezioso, M.R. Mahmoodi, F.M. Bayat, H. Nili, H. Kim et al., Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits. Nat. Commun. 9, 5311 ( 2018). https://doi.org/10.1038/s41467-018-07757-y
|
13. |
|
14. |
M. Hu, C.E. Graves, C. Li, Y. Li, N. Ge et al., Memristor-based analog computation and neural network classification with a dot product engine. Adv. Mater. 30, 1705914 ( 2018). https://doi.org/10.1002/adma.201705914
|
15. |
|
16. |
|
17. |
|
18. |
|
19. |
Y. Xi, B. Gao, J. Tang, A. Chen, M.-F. Chang et al., In-memory learning with analog resistive switching memory: a review and perspective. Proc. IEEE 109, 14-42 ( 2021). https://doi.org/10.1109/JPROC.2020.3004543
|
20. |
|
21. |
|
22. |
|
23. |
R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories: nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632-2663 ( 2009). https://doi.org/10.1002/adma.200900375
|
24. |
G.W. Burr, R.M. Shelby, S. Sidler, C. di Nolfo, J. Jang et al., Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element. IEEE Trans. Electron Dev. 62, 3498-3507 ( 2015). https://doi.org/10.1109/TED.2015.2439635
|
25. |
V. Joshi, M. Le Gallo, S. Haefeli, I. Boybat, S.R. Nandakumar et al., Accurate deep neural network inference using computational phase-change memory. Nat. Commun. 11, 2473 ( 2020). https://doi.org/10.1038/s41467-020-16108-9
|
26. |
S. Choi, S.H. Tan, Z. Li, Y. Kim, C. Choi et al., SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations. Nat. Mater. 17, 335-340 ( 2018). https://doi.org/10.1038/s41563-017-0001-5
|
27. |
J. Lee, C. Du, K. Sun, E. Kioupakis, W.D. Lu, Tuning ionic transport in memristive devices by graphene with engineered nanopores. ACS Nano 10, 3571-3579 ( 2016). https://doi.org/10.1021/acsnano.5b07943
|
28. |
J.H. Yoon, J.H. Han, J.S. Jung, W. Jeon, G.H. Kim et al., Highly improved uniformity in the resistive switching parameters of TiO 2 thin films by inserting Ru nanodots. Adv. Mater. 25, 1987-1992 ( 2013). https://doi.org/10.1002/adma.201204572
|
29. |
W.-Y. Chang, C.-A. Lin, J.-H. He, T.-B. Wu, Resistive switching behaviors of ZnO nanorod layers. Appl. Phys. Lett. 96, 242109 ( 2010). https://doi.org/10.1063/1.3453450
|
30. |
|
31. |
|
32. |
F. Zhang, H. Zhang, S. Krylyuk, C.A. Milligan, Y. Zhu et al., Electric-field induced structural transition in vertical MoTe 2- and Mo 1-xW xTe 2-based resistive memories. Nat. Mater. 18, 55-61 ( 2019). https://doi.org/10.1038/s41563-018-0234-y
|
33. |
A.A. Bessonov, M.N. Kirikova, D.I. Petukhov, M. Allen, T. Ryhänen et al., Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 14, 199-204 ( 2015). https://doi.org/10.1038/nmat4135
|
34. |
X. Feng, Y. Li, L. Wang, S. Chen, Z.G. Yu et al., Neuromorphic computing: a fully printed flexible MoS 2 memristive artificial synapse with femtojoule switching energy. Adv. Electron. Mater. 5, 1970061 ( 2019). https://doi.org/10.1002/aelm.201970061
|
35. |
|
36. |
|
37. |
|
38. |
Y. Li, S. Chen, Z. Yu, S. Li, Y. Xiong et al., In-memory computing using memristor arrays with ultrathin 2D PdSeO x/PdSe 2 heterostructure. Adv. Mater. 34, e2201488 ( 2022). https://doi.org/10.1002/adma.202201488
|
39. |
|
40. |
R. Ge, X. Wu, M. Kim, J. Shi, S. Sonde et al., Atomristor: nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. Nano Lett. 18, 434-441 ( 2018). https://doi.org/10.1021/acs.nanolett.7b04342
|
41. |
R. Xu, H. Jang, M.-H. Lee, D. Amanov, Y. Cho et al., Vertical MoS 2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV. Nano Lett. 19, 2411-2417 ( 2019). https://doi.org/10.1021/acs.nanolett.8b05140
|
42. |
|
43. |
S. Wang, C.-Y. Wang, P. Wang, C. Wang, Z.-A. Li et al., Networking retinomorphic sensor with memristive crossbar for brain-inspired visual perception. Natl. Sci. Rev. 8, nwaa172 ( 2020). https://doi.org/10.1093/nsr/nwaa172
|
44. |
V.K. Sangwan, H.-S. Lee, H. Bergeron, I. Balla, M.E. Beck et al., Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554, 500-504 ( 2018). https://doi.org/10.1038/nature25747
|
45. |
Y.S. Ang, L. Cao, L.K. Ang, Physics of electron emission and injection in two-dimensional materials: theory and simulation. InfoMat 3, 502-535 ( 2021). https://doi.org/10.1002/inf2.12168
|
46. |
D. Akinwande, C. Huyghebaert, C.H. Wang, M.I. Serna, S. Goossens et al., Graphene and two-dimensional materials for silicon technology. Nature 573, 507-518 ( 2019). https://doi.org/10.1038/s41586-019-1573-9
|
47. |
|
48. |
|
49. |
C.-Y. Wang, S.-J. Liang, S. Wang, P. Wang, Z.-A. Li et al., Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor. Sci. Adv. 6, eaba6173 ( 2020). https://doi.org/10.1126/sciadv.aba6173
|
50. |
|
51. |
K. Zhu, X. Liang, B. Yuan, M.A. Villena, C. Wen et al., Graphene-boron nitride-graphene cross-point memristors with three stable resistive states. ACS Appl. Mater. Interfaces 11, 37999-38005 ( 2019). https://doi.org/10.1021/acsami.9b04412
|
52. |
C. Choi, J. Leem, M. Kim, A. Taqieddin, C. Cho et al., Curved neuromorphic image sensor array using a MoS 2-organic heterostructure inspired by the human visual recognition system. Nat. Commun. 11, 5934 ( 2020). https://doi.org/10.1038/s41467-020-19806-6
|
53. |
L. Mennel, J. Symonowicz, S. Wachter, D.K. Polyushkin, A.J. Molina-Mendoza et al., Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62-66 ( 2020). https://doi.org/10.1038/s41586-020-2038-x
|
54. |
L. Chen, Z.G. Yu, D. Liang, S. Li, W.C. Tan et al., Ultrasensitive and robust two-dimensional indium selenide flexible electronics and sensors for human motion detection. Nano Energy 76, 105020 2020). https://doi.org/10.1016/j.nanoen.2020.105020
|
55. |
S. Chen, M.R. Mahmoodi, Y. Shi, C. Mahata, B. Yuan et al., Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks. Nat. Electron. 3, 638-645 ( 2020). https://doi.org/10.1038/s41928-020-00473-w
|
56. |
M. Sivan, Y. Li, H. Veluri, Y. Zhao, B. Tang et al., All WSe 2 1T1R resistive RAM cell for future monolithic 3D embedded memory integration. Nat. Commun. 10, 5201 ( 2019). https://doi.org/10.1038/s41467-019-13176-4
|
57. |
C.-Y. Wang, C. Wang, F. Meng, P. Wang, S. Wang et al., 2D layered materials for memristive and neuromorphic applications. Adv. Electron. Mater. 6, 1901107 ( 2020). https://doi.org/10.1002/aelm.201901107
|
58. |
G. Cao, P. Meng, J. Chen, H. Liu, R. Bian et al., 2D material based synaptic devices for neuromorphic computing. Adv. Funct. Mater. 31, 2005443 ( 2021). https://doi.org/10.1002/adfm.202005443
|
59. |
Z. Zhang, D. Yang, H. Li, C. Li, Z. Wang et al., 2D materials and van der Waals heterojunctions for neuromorphic computing. Neuromorph. Comput. Eng. 2, 032004 ( 2022). https://doi.org/10.1088/2634-4386/ac8a6a
|
60. |
|
61. |
K. Liao, P. Lei, M. Tu, S. Luo, T. Jiang et al., Memristor based on inorganic and organic two-dimensional materials: mechanisms, performance, and synaptic applications. ACS Appl. Mater. Interfaces 13, 32606-32623 ( 2021). https://doi.org/10.1021/acsami.1c07665
|
62. |
J. Bian, Z. Cao, P. Zhou, Neuromorphic computing: devices, hardware, and system application facilitated by two-dimensional materials. Appl. Phys. Rev. 8, 041313 ( 2021). https://doi.org/10.1063/5.0067352
|
63. |
F. Zhang, C. Li, Z. Li, L. Dong, J. Zhao, Recent progress in three-terminal artificial synapses based on 2D materials: from mechanisms to applications. Microsyst. Nanoeng. 9, 16 ( 2023). https://doi.org/10.1038/s41378-023-00487-2
|
64. |
|
65. |
|
66. |
S. Yu, H.Y. Chen, B. Gao, J. Kang, H.S. Wong, HfO x-based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture. ACS Nano 7, 2320-2325 ( 2013). https://doi.org/10.1021/nn305510u
|
67. |
C.-H. Yeh, D. Zhang, W. Cao, K. Banerjee, 0.5T0.5R - introducing an ultra-compact memory cell enabled by shared graphene edge-contact and h-BN insulator, in 2020 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. IEEE, (2020)., 12.3.1-12.3.4
|
68. |
H.-S. Lee, V.K. Sangwan, W.A.G. Rojas, H. Bergeron, H.Y. Jeong et al., Dual-gated MoS 2 memtransistor crossbar array. Adv. Funct. Mater. 30, 2003683 ( 2020). https://doi.org/10.1002/adfm.202003683
|
69. |
|
70. |
M. Naqi, M.S. Kang, N. liu, T. Kim, S. Baek, et al., Multilevel artificial electronic synaptic device of direct grown robust MoS 2 based memristor array for in-memory deep neural network npj 2D Mater. Appl. 6, 53 ( 2022). https://doi.org/10.1038/s41699-022-00325-5
|
71. |
S. Li, M.-E. Pam, Y. Li, L. Chen, Y.-C. Chien et al., Wafer-scale 2D hafnium diselenide based memristor crossbar array for energy-efficient neural network hardware. Adv. Mater. 34, e2103376 ( 2022). https://doi.org/10.1002/adma.202103376
|
72. |
|
73. |
Y. Li, L. Loh, S. Li, L. Chen, B. Li et al., Anomalous resistive switching in memristors based on two-dimensional palladium diselenide using heterophase grain boundaries. Nat. Electron. 4, 348-356 ( 2021). https://doi.org/10.1038/s41928-021-00573-1
|
74. |
M.A. Villena, F. Hui, X. Liang, Y. Shi, B. Yuan et al., Variability of metal/h-BN/metal memristors grown via chemical vapor deposition on different materials. Microelectron. Reliab. 102, 113410 ( 2019). https://doi.org/10.1016/j.microrel.2019.113410
|
75. |
J.B. Roldan, D. Maldonado, C. Aguilera-Pedregosa, F.J. Alonso, Y. Xiao et al., Modeling the variability of Au/Ti/h-BN/Au memristive devices. IEEE Trans. Electron Devices 70, 1533-1539 ( 2023). https://doi.org/10.1109/TED.2022.3197677
|
76. |
M.E. Pam, S. Li, T. Su, Y.C. Chien, Y. Li et al., Interface-modulated resistive switching in Mo-irradiated ReS 2 for neuromorphic computing. Adv. Mater. 34, e2202722 ( 2022). https://doi.org/10.1002/adma.202202722
|
77. |
L. Wang, W. Liao, S.L. Wong, Z.G. Yu, S. Li et al., Artificial synapses based on multiterminal memtransistors for neuromorphic application. Adv. Funct. Mater. 29, 1901106 ( 2019). https://doi.org/10.1002/adfm.201901106
|
78. |
S. Li, B. Li, X. Feng, L. Chen, Y. Li et al., Electron-beam-irradiated rhenium disulfide memristors with low variability for neuromorphic computing npj 2D Mater. Appl. 5, 1 ( 2021). https://doi.org/10.1038/s41699-020-00190-0
|
79. |
J. Jadwiszczak, D. Keane, P. Maguire, C.P. Cullen, Y. Zhou et al., MoS 2 memtransistors fabricated by localized helium ion beam irradiation. ACS Nano 13, 14262-14273 ( 2019). https://doi.org/10.1021/acsnano.9b07421
|
80. |
D. Li, B. Wu, X. Zhu, J. Wang, B. Ryu et al., MoS 2 memristors exhibiting variable switching characteristics toward biorealistic synaptic emulation. ACS Nano 12, 9240-9252 ( 2018). https://doi.org/10.1021/acsnano.8b03977
|
81. |
L. Sun, Z. Wang, J. Jiang, Y. Kim, B. Joo et al., In-sensor reservoir computing for language learning via two-dimensional memristors. Sci. Adv. 7, 1455 ( 2021). https://doi.org/10.1126/sciadv.abg1455
|
82. |
G. Moon, S.Y. Min, C. Han, S.H. Lee, H. Ahn et al., Atomically thin synapse networks on van der Waals photo-memtransistors. Adv. Mater. 35, e2203481 ( 2023). https://doi.org/10.1002/adma.202203481
|
83. |
|
84. |
N.T. Duong, Y.-C. Chien, H. Xiang, S. Li, H. Zheng et al., Dynamic ferroelectric transistor-based reservoir computing for spatiotemporal information processing. Adv. Intell. Syst. 5, 2300009 ( 2023). https://doi.org/10.1002/aisy.202300009
|
85. |
K. Liu, B. Dang, T. Zhang, Z. Yang, L. Bao et al., Multilayer reservoir computing based on ferroelectric α-In 2 Se 3 for hierarchical information processing. Adv. Mater. 34, e2108826 ( 2022). https://doi.org/10.1002/adma.202108826
|
86. |
X. Feng, S. Li, S.L. Wong, S. Tong, L. Chen et al., Self-selective multi-terminal memtransistor crossbar array for In-memory computing. ACS Nano 15, 1764-1774 ( 2021). https://doi.org/10.1021/acsnano.0c09441
|
87. |
J.-J. Huang, Y.-M. Tseng, W.-C. Luo, C.-W. Hsu, T.-H. Hou, One selector-one resistor (1S1R) crossbar array for high-density flexible memory applications, in 2011 International Electron Devices Meeting. Washington, DC, USA. IEEE, (2011)., 31.7.1-31.7.4
|
88. |
K. Zhang, Y. Feng, F. Wang, Z. Yang, J. Wang, Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. J. Mater. Chem. C 5, 11992-12022 ( 2017). https://doi.org/10.1039/C7TC04300G
|
89. |
|
90. |
B. Tang, H. Veluri, Y. Li, Z.G. Yu, M. Waqar et al., Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing. Nat. Commun. 13, 3037 ( 2022). https://doi.org/10.1038/s41467-022-30519-w
|
91. |
R. Yue, A.T. Barton, H. Zhu, A. Azcatl, L.F. Pena et al., HfSe 2 thin films: 2D transition metal dichalcogenides grown by molecular beam epitaxy. ACS Nano 9, 474-480 ( 2015). https://doi.org/10.1021/nn5056496
|
92. |
M.J. Mleczko, C. Zhang, H.R. Lee, H.H. Kuo, B. Magyari-Köpe et al., HfSe 2 and ZrSe 2: two-dimensional semiconductors with native high-κ oxides. Sci. Adv. 3, e1700481 ( 2017). https://doi.org/10.1126/sciadv.1700481
|
93. |
V.G. Pleshchev, N.V. Selezneva, N.V. Baranov, Influence of copper intercalation on the resistive state of compounds in the Cu-HfSe 2 system. Phys. Solid State 54, 716-721 ( 2012). https://doi.org/10.1134/S1063783412040221
|
94. |
V.G. Pleshchev, N.V. Melnikova, N.V. Baranov, Relaxation processes in an alternating-current electric field and energy loss mechanisms in hafnium diselenide cointercalated with copper and silver atoms. Phys. Solid State 58, 1758-1763 ( 2016). https://doi.org/10.1134/S1063783416090274
|
95. |
L. Liu, Y. Li, X. Huang, J. Chen, Z. Yang et al., Low-power memristive logic device enabled by controllable oxidation of 2D HfSe 2 for In-memory computing. Adv. Sci. 8, e2005038 ( 2021). https://doi.org/10.1002/advs.202005038
|
96. |
Y. Wang, F. Wu, X. Liu, J. Lin, J.-Y. Chen et al., High on/off ratio black phosphorus based memristor with ultra-thin phosphorus oxide layer. Appl. Phys. Lett. 115, 193503 ( 2019). https://doi.org/10.1063/1.5115531
|
97. |
H. Zhou, V. Sorkin, S. Chen, Z. Yu, K.-W. Ang et al., Design-dependent switching mechanisms of schottky-barrier-modulated memristors based on 2D semiconductor. Adv. Electron. Mater. 9, 2201252 ( 2023). https://doi.org/10.1002/aelm.202201252
|
98. |
|
99. |
W.S. Yun, J.D. Lee, Schottky barrier tuning of the single-layer MoS 2 on magnetic metal substrates through vacancy defects and hydrogenation. Phys. Chem. Chem. Phys. 18, 31027-31032 ( 2016). https://doi.org/10.1039/C6CP05384J
|
100. |
J. Yuan, S.E. Liu, A. Shylendra, W.A. Gaviria Rojas, S. Guo et al., Reconfigurable MoS 2 memtransistors for continuous learning in spiking neural networks. Nano Lett. 21, 6432-6440 ( 2021). https://doi.org/10.1021/acs.nanolett.1c00982
|
101. |
L. Tong, Z. Peng, R. Lin, Z. Li, Y. Wang et al., 2D materials-based homogeneous transistor-memory architecture for neuromorphic hardware. Science 373, 1353-1358 ( 2021). https://doi.org/10.1126/science.abg3161
|
102. |
A. Sebastian, R. Pendurthi, A. Kozhakhmetov, N. Trainor, J.A. Robinson et al., Two-dimensional materials-based probabilistic synapses and reconfigurable neurons for measuring inference uncertainty using Bayesian neural networks. Nat. Commun. 13, 6139 ( 2022). https://doi.org/10.1038/s41467-022-33699-7
|
103. |
S. Hao, X. Ji, S. Zhong, K.Y. Pang, K.G. Lim et al., A monolayer leaky integrate-and-fire neuron for 2D memristive neuromorphic networks. Adv. Electron. Mater. 6, 1901335 ( 2020). https://doi.org/10.1002/aelm.201901335
|
104. |
K. Liu, T. Zhang, B. Dang, L. Bao, L. Xu et al., An optoelectronic synapse based on α-In 2Se 3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron. 5, 761-773 ( 2022). https://doi.org/10.1038/s41928-022-00847-2
|
105. |
|
106. |
|
107. |
Y. Shen, W. Zheng, K. Zhu, Y. Xiao, C. Wen et al., Variability and yield in h-BN-based memristive circuits: the role of each type of defect. Adv. Mater. 33, e2103656 ( 2021). https://doi.org/10.1002/adma.202103656
|
108. |
The International Roadmap For Devices and Systems: 2022, https://irds.ieee.org/images/files/pdf/2022/2022IRDS_BC.pdfAccessed 8 Nov 22
URL
|
109. |
B. Yuan, X. Liang, L. Zhong, Y. Shi, F. Palumbo et al., 150nm × 200nm cross-point hexagonal boron nitride-based memristors. Adv. Electron. Mater. 6, 1900115 ( 2020). https://doi.org/10.1002/aelm.201900115
|
110. |
Y. Zheng, H. Ravichandran, T.F. Schranghamer, N. Trainor, J.M. Redwing et al., Hardware implementation of Bayesian network based on two-dimensional memtransistors. Nat. Commun. 13, 5578 ( 2022). https://doi.org/10.1038/s41467-022-33053-x
|
111. |
A. Krishnaprasad, D. Dev, S.S. Han, Y. Shen, H.S. Chung et al., MoS 2 synapses with ultra-low variability and their implementation in Boolean logic. ACS Nano 16, 2866-2876 ( 2022). https://doi.org/10.1021/acsnano.1c09904
|
112. |
J.B. Roldan, D. Maldonado, C. Aguilera-Pedregosa, E. Moreno, F. Aguirre et al. Spiking neural networks based on two-dimensional materials npj 2D Mater. Appl. 6, 63 ( 2022). https://doi.org/10.1038/s41699-022-00341-5
|
113. |
K. Wang, L. Li, R. Zhao, J. Zhao, Z. Zhou et al., A pure 2H-MoS 2 nanosheet-based memristor with low power consumption and linear multilevel storage for artificial synapse emulator. Adv. Electron. Mater. 6, 1901342 ( 2020). https://doi.org/10.1002/aelm.201901342
|
114. |
|
115. |
Y.-C. Chien, H. Xiang, J. Wang, Y. Shi, X. Fong et al., Attack resilient true random number generators using ferroelectric-enhanced stochasticity in 2D transistor. Small 19, e2302842 ( 2023). https://doi.org/10.1002/smll.202302842
|
116. |
X. Chen, T. Wang, J. Shi, W. Lv, Y. Han et al., A novel artificial neuron-like gas sensor constructed from CuS quantum dots/Bi 2S 3 nanosheets. Nano-Micro Lett. 14, 8 ( 2021). https://doi.org/10.1007/s40820-021-00740-1
|
117. |
|
118. |
D. Dev, A. Krishnaprasad, M.S. Shawkat, Z. He, S. Das et al., 2D MoS 2-based threshold switching memristor for artificial neuron. IEEE Electron Device Lett. 41, 936-939 ( 2020). https://doi.org/10.1109/LED.2020.2988247
|
119. |
Z. Zhang, S. Gao, Z. Li, Y. Xu, R. Yang et al., Artificial LIF neuron with bursting behavior based on threshold switching device. IEEE Trans. Electron Devices 70, 1374-1379 ( 2023). https://doi.org/10.1109/TED.2023.3236906
|
120. |
H. Kalita, A. Krishnaprasad, N. Choudhary, S. Das, D. Dev et al., Artificial neuron using vertical MoS 2/graphene threshold switching memristors. Sci. Rep. 9, 53 ( 2019). https://doi.org/10.1038/s41598-018-35828-z
|
121. |
A. Dodda, N. Trainor, J.M. Redwing, S. Das, All-in-one, bio-inspired, and low-power crypto engines for near-sensor security based on two-dimensional memtransistors. Nat. Commun. 13, 3587 ( 2022). https://doi.org/10.1038/s41467-022-31148-z
|
122. |
S. Fu, J.-H. Park, H. Gao, T. Zhang, X. Ji et al., Two-terminal MoS 2 memristor and the homogeneous integration with a MoS 2 transistor for neural networks. Nano Lett. 23, 5869-5876 ( 2023). https://doi.org/10.1021/acs.nanolett.2c05007
|
123. |
|
124. |
|
125. |
Z. Wang, S. Joshi, S. Savel’ev, W. Song, R. Midya, et al., Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1, 137-145 ( 2018). https://doi.org/10.1038/s41928-018-0023-2
|
126. |
Y. Wang, W. Gao, S. Yang, Q. Chen, C. Ye et al., Humanoid intelligent display platform for audiovisual interaction and sound identification. Nano-Micro Lett. 15, 221 ( 2023). https://doi.org/10.1007/s40820-023-01199-y
|
127. |
|
128. |
R. Wu, S. Seo, L. Ma, J. Bae, T. Kim, Full-fiber auxetic-interlaced yarn sensor for sign-language translation glove assisted by artificial neural network. Nano-Micro Lett. 14, 139 ( 2022). https://doi.org/10.1007/s40820-022-00887-5
|
129. |
|
130. |
Z. Shi, L. Meng, X. Shi, H. Li, J. Zhang et al., Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Lett. 14, 141 ( 2022). https://doi.org/10.1007/s40820-022-00874-w
|
131. |
|
132. |
K.C. Kwon, J.H. Baek, K. Hong, S.Y. Kim, H.W. Jang, Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing. Nano-Micro Lett. 14, 58 ( 2022). https://doi.org/10.1007/s40820-021-00784-3
|
133. |
K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv:1409.1556.
|
134. |
J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: unified, real-time object detection, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA. IEEE, ( 2016), 779-788. https://doi.org/10.1109/CVPR.2016.91
|
135. |
H. Chen, T. Wan, Y. Zhou, J. Yan, C. Chen et al., Highly nonlinear memory selectors with ultrathin MoS 2/WSe 2/MoS 2 heterojunction. Adv. Funct. Mater. ( 2023). https://doi.org/10.1002/adfm.202304242
|
136. |
|