1. |
|
2. |
|
3. |
|
4. |
|
5. |
|
6. |
|
7. |
Z. Wang, S. Joshi, S. Savel’ev, W. Song, R. Midya et al., Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1, 137-145 ( 2018). https://doi.org/10.1038/s41928-018-0023-2
|
8. |
|
9. |
K. Hippalgaonkar, Q. Li, X. Wang, J.W. Fisher III., J. Kirkpatrick et al., Knowledge-integrated machine learning for materials: lessons from gameplaying and robotics. Nat. Rev. Mater. 8, 241-260 ( 2023). https://doi.org/10.1038/s41578-022-00513-1
|
10. |
|
11. |
J.-Q. Yang, R. Wang, Y. Ren, J.-Y. Mao, Z.-P. Wang et al., Neuromorphic engineering: from biological to spike-based hardware nervous systems. Adv. Mater. 32, e2003610 ( 2020). https://doi.org/10.1002/adma.202003610
|
12. |
C. Eckel, J. Lenz, A. Melianas, A. Salleo, R.T. Weitz, Nanoscopic electrolyte-gated vertical organic transistors with low operation voltage and five orders of magnitude switching range for neuromorphic systems. Nano Lett. 22, 973-978 ( 2022). https://doi.org/10.1021/acs.nanolett.1c03832
|
13. |
B.J. Shastri, A.N. Tait, T. Ferreira de Lima, W.H.P. Pernice, H. Bhaskaran et al., Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 15, 102-114 ( 2021). https://doi.org/10.1038/s41566-020-00754-y
|
14. |
|
15. |
|
16. |
S. Najmaei, A.L. Glasmann, M.A. Schroeder, W.L. Sarney, M.L. Chin et al., Advancements in materials, devices, and integration schemes for a new generation of neuromorphic computers. Mater. Today 59, 80-106 ( 2022). https://doi.org/10.1016/j.mattod.2022.08.017
|
17. |
|
18. |
L. Wang, W. Liao, S.L. Wong, Z.G. Yu, S. Li et al., Artificial synapses based on multiterminal memtransistors for neuromorphic application. Adv. Funct. Mater. 29, 1901106 ( 2019). https://doi.org/10.1002/adfm.201901106
|
19. |
M. Seo, M.-H. Kang, S.-B. Jeon, H. Bae, J. Hur et al., First demonstration of a logic-process compatible junctionless ferroelectric FinFET synapse for neuromorphic applications. IEEE Electron Device Lett. 39, 1445-1448 ( 2018). https://doi.org/10.1109/LED.2018.2852698
|
20. |
Y.-C. Chiang, C.-C. Hung, Y.-C. Lin, Y.-C. Chiu, T. Isono et al., High-performance nonvolatile organic photonic transistor memory devices using conjugated rod-coil materials as a floating gate. Adv. Mater. 32, e2002638 ( 2020). https://doi.org/10.1002/adma.202002638
|
21. |
J. Hochstetter, R. Zhu, A. Loeffler, A. Diaz-Alvarez, T. Nakayama et al., Avalanches and edge-of-chaos learning in neuromorphic nanowire networks. Nat. Commun. 12, 4008 ( 2021). https://doi.org/10.1038/s41467-021-24260-z
|
22. |
|
23. |
R.A. Poldrack, J. Clark, E.J. Paré-Blagoev, D. Shohamy, J. Creso Moyano et al., Interactive memory systems in the human brain. Nature 414, 546-550 ( 2001). https://doi.org/10.1038/35107080
|
24. |
H. Zhang, H. Zeng, A. Priimagi, O. Ikkala, Viewpoint: Pavlovian materials—functional biomimetics inspired by classical conditioning. Adv. Mater. 32, 1906619 ( 2020). https://doi.org/10.1002/adma.201906619
|
25. |
|
26. |
J.H. Baek, K.J. Kwak, S.J. Kim, J. Kim, J.Y. Kim et al., Two-terminal lithium-mediated artificial synapses with enhanced weight modulation for feasible hardware neural networks. Nano-Micro Lett. 15, 69 ( 2023). https://doi.org/10.1007/s40820-023-01035-3
|
27. |
K. He, Y. Liu, J. Yu, X. Guo, M. Wang et al., Artificial neural pathway based on a memristor synapse for optically mediated motion learning. ACS Nano 16, 9691-9700 ( 2022). https://doi.org/10.1021/acsnano.2c03100
|
28. |
J. Sun, G. Han, Z. Zeng, Y. Wang, Memristor-based neural network circuit of full-function Pavlov associative memory with time delay and variable learning rate. IEEE Trans. Cybern. 50, 2935-2945 ( 2020). https://doi.org/10.1109/TCYB.2019.2951520
|
29. |
|
30. |
Q. Liu, S. Gao, L. Xu, W. Yue, C. Zhang et al., Nanostructured perovskites for nonvolatile memory devices. Chem. Soc. Rev. 51, 3341-3379 ( 2022). https://doi.org/10.1039/d1cs00886b
|
31. |
|
32. |
S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder et al., Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297-1301 ( 2010). https://doi.org/10.1021/nl904092h
|
33. |
M. Chen, M. Sun, H. Bao, Y. Hu, B. Bao, Flux-charge analysis of two-memristor-based chua’s circuit: dimensionality decreasing model for detecting extreme multistability. IEEE Trans. Ind. Electron. 67, 2197-2206 ( 2020). https://doi.org/10.1109/TIE.2019.2907444
|
34. |
C. Wu, T.W. Kim, T. Guo, F. Li, D.U. Lee et al., Mimicking classical conditioning based on a single flexible memristor. Adv. Mater. 29, 1602890 ( 2017). https://doi.org/10.1002/adma.201602890
|
35. |
|
36. |
|
37. |
W. Wang, S. Gao, Y. Li, W. Yue, H. Kan et al., Artificial optoelectronic synapses based on TiN xO 2-x/MoS 2 heterojunction for neuromorphic computing and visual system. Adv. Funct. Mater. 31, 2170247 ( 2021). https://doi.org/10.1002/adfm.202170247
|
38. |
|
39. |
|
40. |
|
41. |
K. Liu, T. Zhang, B. Dang, L. Bao, L. Xu et al., An optoelectronic synapse based on α-In 2Se 3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron. 5, 761-773 ( 2022). https://doi.org/10.1038/s41928-022-00847-2
|
42. |
|
43. |
D. Kumar, A. Saleem, L.B. Keong, Y.H. Wang, T.-Y. Tseng, Light induced RESET phenomenon in invisible memristor for photo sensing. IEEE Electron Device Lett. 43, 1069-1072 ( 2022). https://doi.org/10.1109/LED.2022.3172866
|
44. |
Y. Pei, L. Yan, Z. Wu, J. Lu, J. Zhao et al., Artificial visual perception nervous system based on low-dimensional material photoelectric memristors. ACS Nano 15, 17319-17326 ( 2021). https://doi.org/10.1021/acsnano.1c04676
|
45. |
W. Wang, Y. Li, W. Yue, S. Gao, C. Zhang et al., Study on multilevel resistive switching behavior with tunable ON/OFF ratio capability in forming-free ZnO QDs-based RRAM. IEEE Trans. Electron Devices 67, 4884-4890 ( 2020). https://doi.org/10.1109/TED.2020.3022005
|
46. |
T.J. Jacobsson, S. Viarbitskaya, E. Mukhtar, T. Edvinsson, A size dependent discontinuous decay rate for the exciton emission in ZnO quantum dots. Phys. Chem. Chem. Phys. 16, 13849-13857 ( 2014). https://doi.org/10.1039/c4cp00254g
|
47. |
B. Liu, E.S. Aydil, Growth of oriented single-crystalline rutile TiO 2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131, 3985-3990 ( 2009). https://doi.org/10.1021/ja8078972
|
48. |
|
49. |
|
50. |
S. Liu, M.-Y. Li, D. Su, M. Yu, H. Kan et al., Broad-band high-sensitivity ZnO colloidal quantum dots/self-assembled Au nanoantennas heterostructures photodetectors. ACS Appl. Mater. Interfaces 10, 32516-32525 ( 2018). https://doi.org/10.1021/acsami.8b09442
|
51. |
|
52. |
M. Xiao, K.P. Musselman, W.W. Duley, N.Y. Zhou, Resistive switching memory of TiO 2 nanowire networks grown on Ti foil by a single hydrothermal method. Nano-Micro Lett. 9, 15 ( 2016). https://doi.org/10.1007/s40820-016-0116-2
|
53. |
W. Liu, Y. Yun, M. Li, J. Mao, C. Li et al., Preparation of hollow ceramic photocatalytic membrane grafted with silicon-doped TiO 2 nanorods and conversion of high-concentration NO. Chem. Eng. J. 437, 135261 ( 2022). https://doi.org/10.1016/j.cej.2022.135261
|
54. |
M.S. Irshad, A. Abbas, H.H. Qazi, M.H. Aziz, M. Shah et al., Role of point defects in hybrid phase TiO 2 for resistive random-access memory (RRAM). Mater. Res. Express 6, 076311 ( 2019). https://doi.org/10.1088/2053-1591/ab17b5
|
55. |
P. Russo, M. Xiao, R. Liang, N.Y. Zhou, UV-induced multilevel current amplification memory effect in zinc oxide rods resistive switching devices. Adv. Funct. Mater. 28, 1706230 ( 2018). https://doi.org/10.1002/adfm.201706230
|
56. |
W. Wang, R. Wang, T. Shi, J. Wei, R. Cao et al., A self-rectification and quasi-linear analogue memristor for artificial neural networks. IEEE Electron Device Lett. 40, 1407-1410 ( 2019). https://doi.org/10.1109/LED.2019.2929240
|
57. |
J.-T. Yang, C. Ge, J.-Y. Du, H.-Y. Huang, M. He et al., Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor. Adv. Mater. ( 2018). https://doi.org/10.1002/adma.201801548
|
58. |
S.J. Kim, T.H. Lee, J.-M. Yang, J.W. Yang, Y.J. Lee et al., Vertically aligned two-dimensional halide perovskites for reliably operable artificial synapses. Mater. Today 52, 19-30 ( 2022). https://doi.org/10.1016/j.mattod.2021.10.035
|
59. |
Y. Lin, J. Liu, J. Shi, T. Zeng, X. Shan et al., Nitrogen-induced ultralow power switching in flexible ZnO-based memristor for artificial synaptic learning. Appl. Phys. Lett. 118, 103502 ( 2021). https://doi.org/10.1063/5.0036667
|
60. |
K.C. Kwon, J.H. Baek, K. Hong, S.Y. Kim, H.W. Jang, Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing. Nano-Micro Lett. 14, 58 ( 2022). https://doi.org/10.1007/s40820-021-00784-3
|
61. |
T. Chang, S.-H. Jo, W. Lu, Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5, 7669-7676 ( 2011). https://doi.org/10.1021/nn202983n
|
62. |
P. Zhang, M. Xia, F. Zhuge, Y. Zhou, Z. Wang et al., Nanochannel-based transport in an interfacial memristor can emulate the analog weight modulation of synapses. Nano Lett. 19, 4279-4286 ( 2019). https://doi.org/10.1021/acs.nanolett.9b00525
|
63. |
Q. Liu, S. Gao, Y. Li, W. Yue, C. Zhang et al., HfO 2/WO 3 heterojunction structured memristor for high-density storage and neuromorphic computing. Adv. Mater. Technol. 8, 2201143 ( 2023). https://doi.org/10.1002/admt.202201143
|