1. |
M. Jia, H. Dechiruji, J. Selberg, P. Pansodtee, J. Mathews et al., Bioelectronic control of chloride ions and concentration with Ag/AgCl contacts. APL Mater. 8, 091106 ( 2020). https://doi.org/10.1063/5.0013867
|
2. |
P.R.F. Rocha, P. Schlett, U. Kintzel, V. Mailänder, L.K.J. Vandamme et al., Electrochemical noise and impedance of Au electrode/electrolyte interfaces enabling extracellular detection of glioma cell populations. Sci. Rep. 6, 34843 ( 2016). https://doi.org/10.1038/srep34843
|
3. |
J. Dunlop, M. Bowlby, R. Peri, D. Vasilyev, R. Arias, High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nat. Rev. Drug Discov. 7, 358-368 ( 2008). https://doi.org/10.1038/nrd2552
|
4. |
R. Liu, R. Chen, A.T. Elthakeb, S.H. Lee, S. Hinckley et al., High density individually addressable nanowire arrays record intracellular activity from primary rodent and human stem cell derived neurons. Nano Lett. 17, 2757-2764 ( 2017). https://doi.org/10.1021/acs.nanolett.6b04752
|
5. |
S. Sundelacruz, M. Levin, D.L. Kaplan, Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev. Rep. 5, 231-246 ( 2009). https://doi.org/10.1007/s12015-009-9080-2
|
6. |
D.J. Blackiston, K.A. McLaughlin, M. Levin, Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle. Cell Cycle 8, 3527-3536 ( 2009). https://doi.org/10.4161/cc.8.21.9888
|
7. |
A. Timmis, N. Townsend, C. Gale, R. Grobbee, N. Maniadakis et al., European society of cardiology:Cardiovascular disease statistics 2017. Oxford University Press, Oxford. (2018)
|
8. |
|
9. |
G. Vorobiof, C. Silverstein, Non-invasive cardiac imaging for evaluation of cardiotoxicity in cancer patients-early detection and follow-up. SA Heart ( 2017). https://doi.org/10.24170/9-4-1829
|
10. |
Y. Yang, A. Liu, C.-T. Tsai, C. Liu, J.C. Wu et al., Cardiotoxicity drug screening based on whole-panel intracellular recording. Biosens. Bioelectron. 216, 114617 ( 2022). https://doi.org/10.1016/j.bios.2022.114617
|
11. |
L. Xiao, Z. Hu, W. Zhang, C. Wu, H. Yu et al., Evaluation of doxorubicin toxicity on cardiomyocytes using a dual functional extracellular biochip. Biosens. Bioelectron. 26, 1493-1499 ( 2010). https://doi.org/10.1016/j.bios.2010.07.093
|
12. |
|
13. |
L. Berdondini, K. Imfeld, A. Maccione, M. Tedesco, S. Neukom et al., Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip 9, 2644-2651 ( 2009). https://doi.org/10.1039/B907394A
|
14. |
C.-X. Lin, J.-L. Gu, J.-M. Cao, The acute toxic effects of platinum nanoparticles on ion channels, transmembrane potentials of cardiomyocytes in vitro and heart rhythm in vivo in mice. Int. J. Nanomedicine 14, 5595-5609 ( 2019). https://doi.org/10.2147/IJN.S209135
|
15. |
|
16. |
|
17. |
|
18. |
D. Ossola, M.-Y. Amarouch, P. Behr, J. Vörös, H. Abriel et al., Force-controlled patch clamp of beating cardiac cells. Nano Lett. 15, 1743-1750 ( 2015). https://doi.org/10.1021/nl504438z
|
19. |
B. Hille, Ion channels of excitable membranes sunderland. Sinauer Associates Inc. (2001)
|
20. |
A. Molleman, Patch clamping: an introductory guide to patch clamp electrophysiology (Patch Clamping: An Introductory Guide To Patch Clamp Electrophysiology; 2003)
|
21. |
|
22. |
|
23. |
B. Amuzescu, S. Frech, K. Lin, J. Eisfeld, J. Kudolo et al., Electrophysiology Characterization of Human Induced Pluripotent Stem Cell-derived Cardiomyocytes Using Automated Patch-clamp. (2015)
|
24. |
A. Marques-Smith, J.P. Neto, G. Lopes, J. Nogueira, L. Calcaterra et al., Recording from the same neuron with high-density CMOS probes and patch-clamp: a ground-truth dataset and an experiment in collaboration. bioRxiv ( 2018). https://doi.org/10.1101/370080
|
25. |
V. Grenier, K.N. Martinez, B.R. Benlian, D.M. García-Almedina, B.K. Raliski et al., Molecular prosthetics for long-term functional imaging with fluorescent reporters. ACS Cent. Sci. 8, 118-121 ( 2022). https://doi.org/10.1021/acscentsci.1c01153
|
26. |
A. Grinvald, R. Hildesheim, VSDI: a new era in functional imaging of cortical dynamics. Nat. Rev. Neurosci. 5, 874-885 ( 2004). https://doi.org/10.1038/nrn1536
|
27. |
L.N. Kahyaoglu, R. Madangopal, M. Stensberg, Rickus J.L, Light-directed functionalization methods for high-resolution optical fiber based biosensors. SPIE Sensing Technology + Applications. Proc SPIE 9486, Advanced Environmental, Chemical, and Biological Sensing Technologies XII Baltimore, MD, USA 9486, 9-18 ( 2015). https://doi.org/10.1117/12.2177178
|
28. |
A. Matiukas, B.G. Mitrea, M. Qin, A.M. Pertsov, A.G. Shvedko et al., Near-infrared voltage-sensitive fluorescent dyes optimized for optical mapping in blood-perfused myocardium. Heart Rhythm 4, 1441-1451 ( 2007). https://doi.org/10.1016/j.hrthm.2007.07.012
|
29. |
M. Warren, K.W. Spitzer, B.W. Steadman, T.D. Rees, P. Venable et al., High-precision recording of the action potential in isolated cardiomyocytes using the near-infrared fluorescent dye di-4-ANBDQBS. Am. J. Physiol. Heart Circ. Physiol. 299, H1271-H1281 ( 2010). https://doi.org/10.1152/ajpheart.00248.2010
|
30. |
M. Warren, K.W. Spitzer, B.W. Steadman, P. Venable, T. Taylor et al., Near infrared emitting dye di-4-ANBDQBS for recording action potentials in isolated cardiomyocytes. Biophys. J. 96, 293a ( 2009). https://doi.org/10.1016/j.bpj.2008.12.1453
|
31. |
J. Abbott, T. Ye, K. Krenek, R.S. Gertner, S. Ban et al., A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons. Nat. Biomed. Eng. 4, 232-241 ( 2020). https://doi.org/10.1038/s41551-019-0455-7
|
32. |
T. Banno, S. Tsuruhara, Y. Seikoba, R. Tonai, K. Yamashita et al., Nanoneedle-electrode devices for in vivo recording of extracellular action potentials. ACS Nano 16, 10692-10700 ( 2022). https://doi.org/10.1021/acsnano.2c02399
|
33. |
A. Barbaglia, M. Dipalo, G. Melle, G. Iachetta, L. Deleye et al., Mirroring action potentials: label-free, accurate, and noninvasive electrophysiological recordings of human-derived cardiomyocytes. Adv. Mater. 33, e2004234 ( 2021). https://doi.org/10.1002/adma.202004234
|
34. |
B.X.E. Desbiolles, E. de Coulon, A. Bertsch, S. Rohr, P. Renaud, Intracellular recording of cardiomyocyte action potentials with nanopatterned volcano-shaped microelectrode arrays. Nano Lett. 19, 6173-6181 ( 2019). https://doi.org/10.1021/acs.nanolett.9b02209
|
35. |
J. Fang, D. Xu, H. Wang, J. Wu, Y. Li et al., Scalable and robust hollow nanopillar electrode for enhanced intracellular action potential recording. Nano Lett. 23, 243-251 ( 2023). https://doi.org/10.1021/acs.nanolett.2c04222
|
36. |
Z. Jahed, Y. Yang, C.-T. Tsai, E.P. Foster, A.F. McGuire et al., Nanocrown electrodes for parallel and robust intracellular recording of cardiomyocytes. Nat. Commun. 13, 2253 ( 2022). https://doi.org/10.1038/s41467-022-29726-2
|
37. |
J.T. Robinson, M. Jorgolli, A.K. Shalek, M.-H. Yoon, R.S. Gertner et al., Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 7, 180-184 ( 2012). https://doi.org/10.1038/nnano.2011.249
|
38. |
M. Abarkan, A. Pirog, D. Mafilaza, G. Pathak, G. N’Kaoua et al., Vertical organic electrochemical transistors and electronics for low amplitude micro-organ signals. Adv. Sci. 9, e2105211 ( 2022). https://doi.org/10.1002/advs.202105211
|
39. |
B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie et al., Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830-834 ( 2010). https://doi.org/10.1126/science.1192033
|
40. |
T. Cohen-Karni, Q. Qing, Q. Li, Y. Fang, C.M. Lieber, Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett. 10, 1098-1102 ( 2010). https://doi.org/10.1021/nl1002608
|
41. |
X. Duan, R. Gao, P. Xie, T. Cohen-Karni, Q. Qing et al., Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 7, 174-179 ( 2011). https://doi.org/10.1038/nnano.2011.223
|
42. |
Q. Qing, Z. Jiang, L. Xu, R. Gao, L. Mai et al., Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat. Nanotechnol. 9, 142-147 ( 2014). https://doi.org/10.1038/nnano.2013.273
|
43. |
S. Asgarifar, H. Gomes, A. Mestre, P.M. C. Inácio, J. Bragança et al., in Electrochemically Gated Graphene Field-effect Transistor for Extracellular Cell Signal Recording. ed. by (2016), pp. 558-564.
|
44. |
|
45. |
A. Kyndiah, F. Leonardi, C. Tarantino, T. Cramer, R. Millan-Solsona et al., Bioelectronic recordings of cardiomyocytes with accumulation mode electrolyte gated organic field effect transistors. Biosens. Bioelectron. 150, 111844 ( 2020). https://doi.org/10.1016/j.bios.2019.111844
|
46. |
H. Gao, F. Yang, K. Sattari, X. Du, T. Fu et al., Bioinspired two-in-one nanotransistor sensor for the simultaneous measurements of electrical and mechanical cellular responses. Sci. Adv. 8, eabn2485 ( 2022). https://doi.org/10.1126/sciadv.abn2485
|
47. |
P. Connolly, P. Clark, A.S.G. Curtis, J.A.T. Dow, C.D.W. Wilkinson, An Extracellular microelectrode Array for monitoring electrogenic cells in culture. Biosens. Bioelectron. 5, 223-234 ( 1990). https://doi.org/10.1016/0956-5663(90)80011-2
|
48. |
T.J. Blanche, M.A. Spacek, J.F. Hetke, N.V. Swindale, Polytrodes: high-density silicon electrode arrays for large-scale multiunit recording. J. Neurophysiol. 93, 2987-3000 ( 2005). https://doi.org/10.1152/jn.01023.2004
|
49. |
P.J. Koester, C. Tautorat, H. Beikirch, J. Gimsa, W. Baumann, Recording electric potentials from single adherent cells with 3D microelectrode arrays after local electroporation. Biosens. Bioelectron. 26, 1731-1735 ( 2010). https://doi.org/10.1016/j.bios.2010.08.003
|
50. |
|
51. |
V. Zlochiver, S.L. Kroboth, C.R. Beal, J.A. Cook, R. Joshi-Mukherjee, Human iPSC-derived cardiomyocyte networks on multiwell micro-electrode arrays for recurrent action potential recordings. J. Vis. Exp. 149, e59906 ( 2019). https://doi.org/10.3791/59906
|
52. |
X. Wei, C. Qin, C. Gu, C. He, Q. Yuan et al., A novel bionic in vitro bioelectronic tongue based on cardiomyocytes and microelectrode array for bitter and umami detection. Biosens. Bioelectron. 145, 111673 ( 2019). https://doi.org/10.1016/j.bios.2019.111673
|
53. |
|
54. |
I. Zadorozhnyi, H. Hlukhova, Y. Kutovyi, V. Handziuk, N. Naumova et al., Towards pharmacological treatment screening of cardiomyocyte cells using Si nanowire FETs. Biosens. Bioelectron. 137, 229-235 ( 2019). https://doi.org/10.1016/j.bios.2019.04.038
|
55. |
G. Presnova, D. Presnov, V. Krupenin, V. Grigorenko, A. Trifonov et al., Biosensor based on a silicon nanowire field-effect transistor functionalized by gold nanoparticles for the highly sensitive determination of prostate specific antigen. Biosens. Bioelectron. 88, 283-289 ( 2017). https://doi.org/10.1016/j.bios.2016.08.054
|
56. |
J. Abbott, T. Ye, L. Qin, M. Jorgolli, R.S. Gertner et al., CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. Nat. Nanotechnol. 12, 460-466 ( 2017). https://doi.org/10.1038/nnano.2017.3
|
57. |
J.S. Park, S.I. Grijalva, D. Jung, S. Li, G.V. Junek et al., Intracellular cardiomyocytes potential recording by planar electrode array and fibroblasts co-culturing on multi-modal CMOS chip. Biosens. Bioelectron. 144, 111626 ( 2019). https://doi.org/10.1016/j.bios.2019.111626
|
58. |
J. Müller, M. Ballini, P. Livi, Y. Chen, M. Radivojevic et al., High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels. Lab Chip 15, 2767-2780 ( 2015). https://doi.org/10.1039/C5LC00133A
|
59. |
|
60. |
B.P. Timko, T. Cohen-Karni, Q. Qing, B. Tian, C.M. Lieber, Design and implementation of functional nanoelectronic interfaces with biomolecules, cells, and tissue using nanowire device arrays. IEEE Trans. Nanotechnol. 9, 269-280 ( 2010). https://doi.org/10.1109/TNANO.2009.2031807
|
61. |
|
62. |
Y. Zhang, L.F. Duan, Y. Zhang, J. Wang, H. Geng et al., Advances in conceptual electronic nanodevices based on 0D and 1D nanomaterials. Nano-Micro Lett. 6, 1-19 ( 2014). https://doi.org/10.1007/BF03353763
|
63. |
|
64. |
Y. Fang, Y. Jiang, H. Acaron Ledesma, J. Yi, X. Gao et al., Texturing silicon nanowires for highly localized optical modulation of cellular dynamics. Nano Lett. 18, 4487-4492 ( 2018). https://doi.org/10.1021/acs.nanolett.8b01626
|
65. |
|
66. |
J. Li, Y. Ma, D. Huang, Z. Wang, Z. Zhang et al., High-performance flexible microneedle array as a low-impedance surface biopotential dry electrode for wearable electrophysiological recording and polysomnography. Nano-Micro Lett. 14, 132 ( 2022). https://doi.org/10.1007/s40820-022-00870-0
|
67. |
|
68. |
D. Jäckel, D.J. Bakkum, T.L. Russell, J. Müller, M. Radivojevic et al., Combination of high-density microelectrode array and patch clamp recordings to enable studies of multisynaptic integration. Sci. Rep. 7, 978 ( 2017). https://doi.org/10.1038/s41598-017-00981-4
|
69. |
|
70. |
|
71. |
|
72. |
|
73. |
X. Dai, W. Zhou, T. Gao, J. Liu, C.M. Lieber, Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues. Nat. Nanotechnol. 11, 776-782 ( 2016). https://doi.org/10.1038/nnano.2016.96
|
74. |
C. Xie, J. Liu, T.-M. Fu, X. Dai, W. Zhou et al., Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater. 14, 1286-1292 ( 2015). https://doi.org/10.1038/nmat4427
|
75. |
S.K. Krishnan, N. Nataraj, M. Meyyappan, U. Pal, Graphene-based field-effect transistors in biosensing and neural interfacing applications: recent advances and prospects. Anal. Chem. 95, 2590-2622 ( 2023). https://doi.org/10.1021/acs.analchem.2c03399
|
76. |
S. Wang, M.Z. Hossain, K. Shinozuka, N. Shimizu, S. Kitada et al., Graphene field-effect transistor biosensor for detection of biotin with ultrahigh sensitivity and specificity. Biosens. Bioelectron. 165, 112363 ( 2020). https://doi.org/10.1016/j.bios.2020.112363
|
77. |
L. Xu, Z. Jiang, L. Mai, Q. Qing, Multiplexed free-standing nanowire transistor bioprobe for intracellular recording: a general fabrication strategy. Nano Lett. 14, 3602-3607 ( 2014). https://doi.org/10.1021/nl5012855
|
78. |
C. Yao, Q. Li, J. Guo, F. Yan, I.-M. Hsing, Rigid and flexible organic electrochemical transistor arrays for monitoring action potentials from electrogenic cells. Adv. Healthc. Mater. 4, 528-533 ( 2015). https://doi.org/10.1002/adhm.201400406
|
79. |
S.J. Luck, An introduction to the event-related potential technique. Sveučilište u Rijeci. (2005)
|
80. |
S. Cabrini, Sub-10-nm three-dimensional plasmonic probes and sensors. 2016 Progress in Electromagnetic Research Symposium (PIERS). Shanghai, China. IEEE, (2016). p 836
|
81. |
R. Gao, S. Strehle, B. Tian, T. Cohen-Karni, P. Xie et al., Outside looking in: nanotube transistor intracellular sensors. Nano Lett. 12, 3329-3333 ( 2012). https://doi.org/10.1021/nl301623p
|
82. |
T.P. Dasari Shareena, D. McShan, A.K. Dasmahapatra, P.B. Tchounwou, A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nano-Micro Lett. 10, 53 ( 2018). https://doi.org/10.1007/s40820-018-0206-4
|
83. |
|
84. |
L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu et al., Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater. 19, 2782-2789 ( 2009). https://doi.org/10.1002/adfm.200900377
|
85. |
W.C. Lee, C.H. Lim, H. Shi, L.A. Tang, Y. Wang et al., Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5, 7334-7341 ( 2011). https://doi.org/10.1021/nn202190c
|
86. |
|
87. |
W. Fu, L. Jiang, E.P. van Geest, L.M. Lima, G.F. Schneider, Sensing at the surface of graphene field-effect transistors. Adv. Mater. 29, 1603610 ( 2017). https://doi.org/10.1002/adma.201603610
|
88. |
R. Stine, S.P. Mulvaney, J.T. Robinson, C.R. Tamanaha, P.E. Sheehan, Fabrication, optimization, and use of graphene field effect sensors. Anal. Chem. 85, 509-521 ( 2013). https://doi.org/10.1021/ac303190w
|
89. |
|
90. |
S.-A. Peng, Z. Jin, P. Ma, D.-Y. Zhang, J.-Y. Shi et al., The sheet resistance of graphene under contact and its effect on the derived specific contact resistivity. Carbon 82, 500-505 ( 2015). https://doi.org/10.1016/j.carbon.2014.11.001
|
91. |
W. Fu, C. Nef, A. Tarasov, M. Wipf, R. Stoop et al., High mobility graphene ion-sensitive field-effect transistors by noncovalent functionalization. Nanoscale 5, 12104-12110 ( 2013). https://doi.org/10.1039/C3NR03940D
|
92. |
|
93. |
F. Veliev, Z. Han, D. Kalita, A. Briançon-Marjollet, V. Bouchiat et al., Recording spikes activity in cultured hippocampal neurons using flexible or transparent graphene transistors. Front. Neurosci. 11, 466 ( 2017). https://doi.org/10.3389/fnins.2017.00466
|
94. |
L. Xu, Z. Jiang, Q. Qing, L. Mai, Q. Zhang et al., Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes. Nano Lett. 13, 746-751 ( 2013). https://doi.org/10.1021/nl304435z
|
95. |
Z. Jiang, Q. Qing, P. Xie, R. Gao, C.M. Lieber, Kinked p-n junction nanowire probes for high spatial resolution sensing and intracellular recording. Nano Lett. 12, 1711-1716 ( 2012). https://doi.org/10.1021/nl300256r
|
96. |
T.-M. Fu, X. Duan, Z. Jiang, X. Dai, P. Xie et al., Sub-10-nm intracellular bioelectronic probes from nanowire-nanotube heterostructures. Proc. Natl. Acad. Sci. U.S.A. 111, 1259-1264 ( 2014). https://doi.org/10.1073/pnas.1323389111
|
97. |
T. Cohen-Karni, D. Casanova, J.F. Cahoon, Q. Qing, D.C. Bell et al., Synthetically encoded ultrashort-channel nanowire transistors for fast, pointlike cellular signal detection. Nano Lett. 12, 2639-2644 ( 2012). https://doi.org/10.1021/nl3011337
|
98. |
R. Elnathan, M. Kwiat, F. Patolsky, N.H. Voelcker, Engineering vertically aligned semiconductor nanowire arrays for applications in the life sciences. Nano Today 9, 172-196 ( 2014). https://doi.org/10.1016/j.nantod.2014.04.001
|
99. |
J. Westwater, D.P. Gosain, S. Tomiya, S. Usui, H. Ruda, Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 15, 554-557 ( 1997). https://doi.org/10.1116/1.589291
|
100. |
Q. Gao, V.G. Dubrovskii, P. Caroff, J. Wong-Leung, L. Li et al., Simultaneous selective-area and vapor-liquid-solid growth of InP nanowire arrays. Nano Lett. 16, 4361-4367 ( 2016). https://doi.org/10.1021/acs.nanolett.6b01461
|
101. |
|
102. |
J. Hu, T.W. Odom, C.M. Lieber, Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435-445 ( 1999). https://doi.org/10.1021/ar9700365
|
103. |
A.K. Shalek, J.T. Robinson, E.S. Karp, J.S. Lee, D.-R. Ahn et al., Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proc. Natl. Acad. Sci. U.S.A. 107, 1870-1875 ( 2010). https://doi.org/10.1073/pnas.0909350107
|
104. |
Y.J. Hwang, C. Hahn, B. Liu, P. Yang, Photoelectrochemical properties of TiO 2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating. ACS Nano 6, 5060-5069 ( 2012). https://doi.org/10.1021/nn300679d
|
105. |
Y. Zhao, S.S. You, A. Zhang, J.H. Lee, J. Huang et al., Scalable ultrasmall three-dimensional nanowire transistor probes for intracellular recording. Nat. Nanotechnol. 14, 783-790 ( 2019). https://doi.org/10.1038/s41565-019-0478-y
|
106. |
|
107. |
Y.Q. Fu, A. Colli, A. Fasoli, J.K. Luo, A.J. Flewitt et al., Deep reactive ion etching as a tool for nanostructure fabrication. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 27, 1520-1526 ( 2009). https://doi.org/10.1116/1.3065991
|
108. |
R. Juhasz, N. Elfström, J. Linnros, Controlled fabrication of silicon nanowires by electron beam lithography and electrochemical size reduction. Nano Lett. 5, 275-280 ( 2005). https://doi.org/10.1021/nl0481573
|
109. |
Y. Zhang, J. Clausmeyer, B. Babakinejad, A.L. Córdoba, T. Ali et al., Spearhead nanometric field-effect transistor sensors for single-cell analysis. ACS Nano 10, 3214-3221 ( 2016). https://doi.org/10.1021/acsnano.5b05211
|
110. |
F. Torricelli, D.Z. Adrahtas, Z. Bao, M. Berggren, F. Biscarini et al., Electrolyte-gated transistors for enhanced performance bioelectronics. Nat. Rev. Meth. Primers 1, 66 ( 2021). https://doi.org/10.1038/s43586-021-00065-8
|
111. |
D. Kireev, M. Brambach, S. Seyock, V. Maybeck, W. Fu et al., Graphene transistors for interfacing with cells: towards a deeper understanding of liquid gating and sensitivity. Sci. Rep. 7, 6658 ( 2017). https://doi.org/10.1038/s41598-017-06906-5
|
112. |
L. Capua, S. Sheibani, S. Kamaei, J. Zhang, A.M. Ionescu, Extended-Gate FET cortisol sensor for stress disorders based on aptamers-decorated graphene electrode: fabrication, Experiments and Unified Analog Predictive Modeling. 2020 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. IEEE, (2020), 35.2.1-35.2.4.
|
113. |
S.J. Park, S.E. Seo, K.H. Kim, S.H. Lee, J. Kim et al., Real-time monitoring of geosmin based on an aptamer-conjugated graphene field-effect transistor. Biosens. Bioelectron. 174, 112804 ( 2021). https://doi.org/10.1016/j.bios.2020.112804
|
114. |
A.K. Geim, D. Jiang, E.H. Hill, F. Schedin, K.S. Novoselov et al., Detection of individual gas molecules absorbed on graphene. arXiv e-prints. (2006)
|
115. |
J. Ristein, W. Zhang, F. Speck, M. Ostler, L. Ley et al., Characteristics of solution gated field effect transistors on the basis of epitaxial graphene on silicon carbide. J. Phys. D Appl. Phys. 43, 345303 ( 2010). https://doi.org/10.1088/0022-3727/43/34/345303
|
116. |
Y. Ohno, K. Maehashi, Y. Yamashiro, K. Matsumoto, Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Lett. 9, 3318-3322 ( 2009). https://doi.org/10.1021/nl901596m
|
117. |
C. Homma, M. Tsukiiwa, H. Noguchi, M. Tanaka, M. Okochi et al., Designable peptides on graphene field-effect transistors for selective detection of odor molecules. Biosens. Bioelectron. 224, 115047 ( 2023). https://doi.org/10.1016/j.bios.2022.115047
|
118. |
R. Negishi, H. Hirano, Y. Ohno, K. Maehashi, K. Matsumoto et al., Layer-by-layer growth of graphene layers on graphene substrates by chemical vapor deposition. Thin Solid Films 519, 6447-6452 ( 2011). https://doi.org/10.1016/j.tsf.2011.04.229
|
119. |
|
120. |
L.H. Hess, M. Jansen, V. Maybeck, M.V. Hauf, M. Seifert et al., Graphene transistor arrays for recording action potentials from electrogenic cells. Adv. Mater. 23, 5045-5049, 4968 ( 2011). https://doi.org/10.1002/adma.201102990
|
121. |
C. Xie, Z. Lin, L. Hanson, Y. Cui, B. Cui, Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 7, 185-190 ( 2012). https://doi.org/10.1038/nnano.2012.8
|
122. |
|
123. |
M. Dipalo, G. Melle, L. Lovato, A. Jacassi, F. Santoro et al., Plasmonic meta-electrodes allow intracellular recordings at network level on high-density CMOS-multi-electrode arrays. Nat. Nanotechnol. 13, 965-971 ( 2018). https://doi.org/10.1038/s41565-018-0222-z
|
124. |
M. Dipalo, H. Amin, L. Lovato, F. Moia, V. Caprettini et al., Intracellular and extracellular recording of spontaneous action potentials in mammalian neurons and cardiac cells with 3D plasmonic nanoelectrodes. Nano Lett. 17, 3932-3939 ( 2017). https://doi.org/10.1021/acs.nanolett.7b01523
|
125. |
M. Dipalo, G.C. Messina, H. Amin, R. La Rocca, V. Shalabaeva et al., 3D plasmonic nanoantennas integrated with MEA biosensors. Nanoscale 7, 3703-3711 ( 2015). https://doi.org/10.1039/c4nr05578k
|
126. |
|
127. |
|
128. |
|
129. |
|
130. |
|
131. |
L.F. Santana, E.P. Cheng, W.J. Lederer, How does the shape of the cardiac action potential control calcium signaling and contraction in the heart? J. Mol. Cell. Cardiol. 49, 901-903 ( 2010). https://doi.org/10.1016/j.yjmcc.2010.09.005
|
132. |
E. Carmeliet, J. Vereecke, Adrenaline and the plateau phase of the cardiac action potential. Importance of Ca++, Na+ and K+ conductance. Pflugers Arch. 313, 300-315 ( 1969). https://doi.org/10.1007/BF00593955
|
133. |
C.H. Luo, Y. Rudy, A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ. Res. 68, 1501-1526 ( 1991). https://doi.org/10.1161/01.res.68.6.1501
|
134. |
Z.C. Lin, A.F. McGuire, P.W. Burridge, E. Matsa, H.Y. Lou et al., Accurate nanoelectrode recording of human pluripotent stem cell-derived cardiomyocytes for assaying drugs and modeling disease. Microsyst. Nanoeng. 3, 16080 ( 2017). https://doi.org/10.1038/micronano.2016.80
|
135. |
Y. Liang, M. Ernst, F. Brings, D. Kireev, V. Maybeck et al., High performance flexible organic electrochemical transistors for monitoring cardiac action potential. Adv. Healthc. Mater. 7, e1800304 ( 2018). https://doi.org/10.1002/adhm.201800304
|
136. |
|
137. |
L. Zhou, K. Wang, H. Sun, S. Zhao, X. Chen et al., Novel graphene biosensor based on the functionalization of multifunctional nano-bovine serum albumin for the highly sensitive detection of cancer biomarkers. Nano-Micro Lett. 11, 20 ( 2019). https://doi.org/10.1007/s40820-019-0250-8
|
138. |
|
139. |
D. Kireev, S. Seyock, J. Lewen, V. Maybeck, B. Wolfrum et al., Graphene multielectrode arrays as a versatile tool for extracellular measurements. Adv. Healthc. Mater. 6, 1601433 ( 2017). https://doi.org/10.1002/adhm.201601433
|
140. |
P.D. Nguyen, F. Ding, S.A. Fischer, W. Liang, X. Li, Solvated first-principles excited-state charge-transfer dynamics with time-dependent polarizable continuum model and solvent dielectric relaxation. J. Phys. Chem. Lett. 3, 2898-2904 ( 2012). https://doi.org/10.1021/jz301042f
|
141. |
L.H. Hess, C. Becker-Freyseng, M.S. Wismer, B.M. Blaschke, M. Lottner et al., Electrical coupling between cells and graphene transistors. Small 11, 1703-1710 ( 2015). https://doi.org/10.1002/smll.201402225
|
142. |
F. Veliev, A. Cresti, D. Kalita, A. Bourrier, T. Belloir et al., Sensing ion channel in neuron networks with graphene field effect transistors. 2D Mater. 5, 045020 ( 2018). https://doi.org/10.1088/2053-1583/aad78f
|
143. |
|
144. |
V. Dupuit, O. Terral, G. Bres, A. Claudel, B. Fernandez et al., A multifunctional hybrid graphene and microfluidic platform to interface topological neuron networks. Adv. Funct. Mater. 32, 2207001 ( 2022). https://doi.org/10.1002/adfm.202207001
|
145. |
J.A. Huang, V. Caprettini, Y. Zhao, G. Melle, N. Maccaferri et al., On-demand intracellular delivery of single particles in single cells by 3D hollow nanoelectrodes. Nano Lett. 19, 722-731 ( 2019). https://doi.org/10.1021/acs.nanolett.8b03764
|
146. |
V. Caprettini, J.A. Huang, F. Moia, A. Jacassi, C.A. Gonano et al., Enhanced Raman investigation of cell membrane and intracellular compounds by 3D plasmonic nanoelectrode arrays. Adv. Sci. 5, 1800560 ( 2018). https://doi.org/10.1002/advs.201800560
|
147. |
|
148. |
D. Xu, Z. Hu, J. Su, F. Wu, W. Yuan, Micro and nanotechnology for intracellular delivery therapy protein. Nano-Micro Lett. 4, 118-123 ( 2012). https://doi.org/10.1007/BF03353702
|
149. |
L. Raes, S. Stremersch, J.C. Fraire, T. Brans, G. Goetgeluk et al., Intracellular delivery of mRNA in adherent and suspension cells by vapor nanobubble photoporation. Nano-Micro Lett. 12, 185 ( 2020). https://doi.org/10.1007/s40820-020-00523-0
|
150. |
H. Yin, W. Jiang, Y. Liu, D. Zhang, F. Wu et al., Advanced near-infrared light approaches for neuroimaging and neuromodulation. BMEMat 1, e12023 ( 2023). https://doi.org/10.1002/bmm2.12023
|
151. |
C. Lin, X. Li, T. Wu, J. Xu, Z. Gong et al., Optofluidic identification of single microorganisms using fiber-optical-tweezer-based Raman spectroscopy with artificial neural network. BMEMat 1, e12007 ( 2023). https://doi.org/10.1002/bmm2.12015
|
152. |
H. Song, M. Kim, E. Kim, J. Lee, I. Jeong et al., Neuromodulation of the peripheral nervous system: Bioelectronic technology and prospective developments. BMEMat 1, e12048 ( 2023). https://doi.org/10.1002/bmm2.12048
|
153. |
|
154. |
|