1. |
|
2. |
Y. Wu, W. Wang, J. Ming, M. Li, L. Xie et al., An exploration of new energy storage system: high energy density, high safety, and fast charging lithium ion battery. Adv. Funct. Mater. 29, 1805978 ( 2019). https://doi.org/10.1002/adfm.201805978
|
3. |
H. Wang, L. Sheng, G. Yasin, L. Wang, H. Xu et al., Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries. Energy Storage Mater. 33, 188-215 ( 2020). https://doi.org/10.1016/j.ensm.2020.08.014
|
4. |
H.-J. Ha, E.-H. Kil, Y.H. Kwon, J.Y. Kim, C.K. Lee et al., UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries. Energy Environ. Sci. 5, 6491-6499 ( 2012). https://doi.org/10.1039/C2EE03025J
|
5. |
A.L. Ahmad, U.R. Farooqui, N.A. Hamid, Synthesis and characterization of porous poly(vinylidene fluoride-co-hexafluoro propylene) (PVDF-co-HFP)/poly(aniline) (PANI)/graphene oxide (GO) ternary hybrid polymer electrolyte membrane. Electrochim. Acta 283, 842-849 ( 2018). https://doi.org/10.1016/j.electacta.2018.07.001
|
6. |
|
7. |
K.K. Fu, Y. Gong, J. Dai, A. Gong, X. Han et al., Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. U.S.A. 113, 7094-7099 ( 2016). https://doi.org/10.1073/pnas.1600422113
|
8. |
X. Ban, W. Zhang, N. Chen, C. Sun, A high-performance and durable poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium battery. J. Phys. Chem. C 122, 9852-9858 ( 2018). https://doi.org/10.1021/acs.jpcc.8b02556
|
9. |
|
10. |
|
11. |
Y. Liu, S. Gorgutsa, C. Santato, M. Skorobogatiy, Flexible, solid electrolyte-based lithium battery composed of LiFePO 4 cathode and Li 4Ti 5O 12 anode for applications in smart textiles. J. Electrochem. Soc. 159, A349-A356 ( 2012). https://doi.org/10.1149/2.020204jes
|
12. |
|
13. |
|
14. |
F. Chen, J. Luo, M.-X. Jing, J. Li, Z.-H. Huang et al., A sandwich structure composite solid electrolyte with enhanced interface stability and electrochemical properties for solid-state lithium batteries. J. Electrochem. Soc. 168, 070513 ( 2021). https://doi.org/10.1149/1945-7111/ac0f89
|
15. |
J. Hu, P. He, B. Zhang, B. Wang, L.-Z. Fan, Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries. Energy Storage Mater. 26, 283-289 ( 2020). https://doi.org/10.1016/j.ensm.2020.01.006
|
16. |
K. Yang, L. Chen, J. Ma, C. Lai, Y. Huang et al., Stable interface chemistry and multiple ion transport of composite electrolyte contribute to ultra-long cycling solid-state LiNi 0.8Co 0.1Mn 0.1O 2/lithium metal batteries. Angew. Chem. Int. Ed. 60, 24668-24675 ( 2021). https://doi.org/10.1002/anie.202110917
|
17. |
A. Rahimpour, M. Jahanshahi, A. Mollahosseini, B. Rajaeian, Structural and performance properties of UV-assisted TiO 2 deposited nano-composite PVDF/SPES membranes. Desalination 285, 31-38 ( 2011). https://doi.org/10.1016/j.desal.2011.09.026
|
18. |
S. Golcuk, A.E. Muftuoglu, S.U. Celik, A. Bozkurt, Synthesis and characterization of polymer electrolyte membranes based on PVDF and styrene via photoinduced grafting. J. Polym. Res. 20, 144 ( 2013). https://doi.org/10.1007/s10965-013-0144-2
|
19. |
|
20. |
|
21. |
W.-P. Chen, H. Duan, J.-L. Shi, Y. Qian, J. Wan et al., Bridging interparticle Li + conduction in a soft ceramic oxide electrolyte. J. Am. Chem. Soc. 143, 5717-5726 ( 2021). https://doi.org/10.1021/jacs.0c12965
|
22. |
|
23. |
J. Cao, L. Wang, M. Fang, Y. Shang, L. Deng et al., Interfacial compatibility of gel polymer electrolyte and electrode on performance of Li-ion battery. Electrochim. Acta 114, 527-532 ( 2013). https://doi.org/10.1016/j.electacta.2013.10.052
|
24. |
J. Cao, L. Wang, M. Fang, X. He, J. Li et al., Structure and electrochemical properties of composite polymer electrolyte based on poly vinylidene fluoride-hexafluoropropylene/titania-poly(methyl methacrylate) for lithium-ion batteries. J. Power. Sources 246, 499-504 ( 2014). https://doi.org/10.1016/j.jpowsour.2013.07.107
|
25. |
|
26. |
J. Cao, L. Wang, X. He, M. Fang, J. Gao et al., In situ prepared nano-crystalline TiO 2-poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries. J. Mater. Chem. A 1, 5955-5961 ( 2013). https://doi.org/10.1039/C3TA00086A
|
27. |
S. Zhang, J. Cao, Y. Shang, L. Wang, X. He et al., Nanocomposite polymer membrane derived from nano TiO 2-PMMA and glass fiber nonwoven: high thermal endurance and cycle stability in lithium ion battery applications. J. Mater. Chem. A 3, 17697-17703 ( 2015). https://doi.org/10.1039/C5TA02781K
|
28. |
Y. Li, H. Shimizu, Compatibilization by homopolymer: significant improvements in the modulus and tensile strength of PPC/PMMA blends by the addition of a small amount of PVAc. ACS Appl. Mater. Interfaces 1, 1650-1655 ( 2009). https://doi.org/10.1021/am900314k
|
29. |
P. Pal, A. Ghosh, Influence of TiO 2 nano-particles on charge carrier transport and cell performance of PMMA-LiClO 4 based nano-composite electrolytes. Electrochim. Acta 260, 157-167 ( 2018). https://doi.org/10.1016/j.electacta.2017.11.070
|
30. |
Z. Tian, W. Pu, X. He, C. Wan, C. Jiang, Preparation of a microporous polymer electrolyte based on poly(vinyl chloride)/poly(acrylonitrile-butyl acrylate) blend for Li-ion batteries. Electrochim. Acta 52, 3199-3206 ( 2007). https://doi.org/10.1016/j.electacta.2006.09.068
|
31. |
H. Buschmann, J. Dölle, S. Berendts, A. Kuhn, P. Bottke et al., Structure and dynamics of the fast lithium ion conductor “Li 7La 3Zr 2O 12.” Phys. Chem. Chem. Phys. 13, 19378-19392 ( 2011). https://doi.org/10.1039/c1cp22108f
|
32. |
J.B. Bates, N.J. Dudney, G.R. Gruzalski, R.A. Zuhr, A. Choudhury et al., Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J. Power. Sources 43, 103-110 ( 1993). https://doi.org/10.1016/0378-7753(93)80106-y
|
33. |
V. Thangadurai, W. Weppner, Li 6ALa 2Ta 2O 12 (A = Sr, Ba): novel garnet-like oxides for fast lithium ion conduction. Adv. Funct. Mater. 15, 107-112 ( 2005). https://doi.org/10.1002/adfm.200400044
|
34. |
|
35. |
M. Murayama, R. Kanno, M. Irie, S. Ito, T. Hata et al., Synthesis of new lithium ionic conductor thio-LISICON—lithium silicon sulfides system. J. Solid State Chem. 168, 140-148 ( 2002). https://doi.org/10.1006/jssc.2002.9701
|
36. |
H. Ben youcef, O. Garcia-Calvo, N. Lago, S. Devaraj, M. Armand, Cross-linked solid polymer electrolyte for all-solid-state rechargeable lithium batteries. Electrochim. Acta 220, 587-594 ( 2016). https://doi.org/10.1016/j.electacta.2016.10.122
|
37. |
|
38. |
Z. Wei, Z. Zhang, S. Chen, Z. Wang, X. Yao et al., UV-cured polymer electrolyte for LiNi 0.85Co 0.05Al 0.1O 2// Li solid state battery working at ambient temperature. Energy Storage Mater. 22, 337-345 ( 2019). https://doi.org/10.1016/j.ensm.2019.02.004
|
39. |
S.H. Siyal, M. Li, H. Li, J.-L. Lan, Y. Yu et al., Ultraviolet irradiated PEO/LATP composite gel polymer electrolytes for lithium-metallic batteries (LMBs). Appl. Surf. Sci. 494, 1119-1126 ( 2019). https://doi.org/10.1016/j.apsusc.2019.07.179
|
40. |
C. Liu, S. Wang, X. Wu, S. Xiao, C. Liu et al., In situ construction of zwitterionic polymer electrolytes with synergistic cation-anion regulation functions for lithium metal batteries. Adv. Funct. Mater. 34, 2307248 ( 2024). https://doi.org/10.1002/adfm.202307248
|
41. |
Y.M. Jeon, S. Kim, M. Lee, W.B. Lee, J.H. Park, Polymer-clay nanocomposite solid-state electrolyte with selective cation transport boosting and retarded lithium dendrite formation. Adv. Energy Mater. 10, 2003114 ( 2020). https://doi.org/10.1002/aenm.202003114
|
42. |
|
43. |
H. Wu, B. Tang, X. Du, J. Zhang, X. Yu et al., LiDFOB initiated in situ polymerization of novel eutectic solution enables room-temperature solid lithium metal batteries. Adv. Sci. 7, 2003370 ( 2020). https://doi.org/10.1002/advs.202003370
|
44. |
Y. Wang, J. Ju, S. Dong, Y. Yan, F. Jiang et al., Facile design of sulfide-based all solid-state lithium metal battery: in situ polymerization within self-supported porous argyrodite skeleton. Adv. Funct. Mater. 31, 2101523 ( 2021). https://doi.org/10.1002/adfm.202101523
|
45. |
Y. Yan, J. Ju, S. Dong, Y. Wang, L. Huang et al., In situ polymerization permeated three-dimensional Li +-percolated porous oxide ceramic framework boosting all solid-state lithium metal battery. Adv. Sci. 8, 2003887 ( 2021). https://doi.org/10.1002/advs.202003887
|
46. |
K. Zhang, F. Wu, X. Wang, L. Zheng, X. Yang et al., An ion-dipole-reinforced polyether electrolyte with ion-solvation cages enabling high-voltage-tolerant and ion-conductive solid-state lithium metal batteries. Adv. Funct. Mater. 32, 2270031 ( 2022). https://doi.org/10.1002/adfm.202270031
|
47. |
S. Huo, L. Sheng, W. Xue, L. Wang, H. Xu et al., Challenges of stable ion pathways in cathode electrode for all-solid-state lithium batteries: a review. Adv. Energy Mater. 13, 2204343 ( 2023). https://doi.org/10.1002/aenm.202204343
|
48. |
Y.Q. Mi, W. Deng, C. He, O. Eksik, Y.P. Zheng et al., In situ polymerized 1, 3-dioxolane electrolyte for integrated solid-state lithium batteries. Angew. Chem. Int. Ed. 62, e202218621 ( 2023). https://doi.org/10.1002/anie.202218621
|
49. |
B. Deng, M.-X. Jing, L.-X. Li, R. Li, H. Yang et al., Nano-zirconia boosting the ionic conductivity and lithium dendrite inhibition ability of a poly(1, 3-dioxolane) solid electrolyte for high-voltage solid-state lithium batteries. Sustain. Energy Fuels 5, 5461-5470 ( 2021). https://doi.org/10.1039/D1SE01132D
|
50. |
T. Chen, H. Wu, J. Wan, M. Li, Y. Zhang et al., Synthetic poly-dioxolane as universal solid electrolyte interphase for stable lithium metal anodes. J. Energy Chem. 62, 172-178 ( 2021). https://doi.org/10.1016/j.jechem.2021.03.018
|
51. |
H. Huang, D. Li, L. Hou, H. Du, H. Wei et al., Advanced protective layer design on the surface of Mg-based metal and application in batteries: challenges and progress. J. Power. Sources 542, 231755 ( 2022). https://doi.org/10.1016/j.jpowsour.2022.231755
|
52. |
G. Zheng, C. Wang, A. Pei, J. Lopez, F. Shi et al., High-performance lithium metal negative electrode with a soft and flowable polymer coating. ACS Energy Lett. 1, 1247-1255 ( 2016). https://doi.org/10.1021/acsenergylett.6b00456
|
53. |
J. Chen, H. Lu, X. Zhang, Y. Zhang, J. Yang et al., Electrochemical polymerization of nonflammable electrolyte enabling fast-charging lithium-sulfur battery. Energy Storage Mater. 50, 387-394 ( 2022). https://doi.org/10.1016/j.ensm.2022.05.044
|
54. |
N. Wang, X. Zhang, Z. Ju, X. Yu, Y. Wang et al., Thickness-independent scalable high-performance Li-S batteries with high areal sulfur loading via electron-enriched carbon framework. Nat. Commun. 12, 4519 ( 2021). https://doi.org/10.1038/s41467-021-24873-4
|
55. |
X. Gao, X. Zheng, Y. Tsao, P. Zhang, X. Xiao et al., All-solid-state lithium-sulfur batteries enhanced by redox mediators. J. Am. Chem. Soc. 143, 18188-18195 ( 2021). https://doi.org/10.1021/jacs.1c07754
|
56. |
G. Xu, A. Kushima, J. Yuan, H. Dou, W. Xue et al., Ad hoc solid electrolyte on acidized carbon nanotube paper improves cycle life of lithium-sulfur batteries. Energy Environ. Sci. 10, 2544-2551 ( 2017). https://doi.org/10.1039/C7EE01898C
|
57. |
|
58. |
F.-Q. Liu, W.-P. Wang, Y.-X. Yin, S.-F. Zhang, J.-L. Shi et al., Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Sci. Adv. 4, eaat5383 ( 2018). https://doi.org/10.1126/sciadv.aat5383
|
59. |
W.-P. Wang, J. Zhang, Y.-X. Yin, H. Duan, J. Chou et al., A rational reconfiguration of electrolyte for high-energy and long-life lithium-chalcogen batteries. Adv. Mater. 32, e2000302 ( 2020). https://doi.org/10.1002/adma.202000302
|
60. |
Y. Yamashita, M. Okada, H. Kasahara, Kinetic studies on the polymerization of 1,3-dioxolane catalyzed by triethyl oxonium tetrafluoroborate. Makromol. Chem. 117, 256-264 ( 1968). https://doi.org/10.1002/macp.1968.021170124
|
61. |
|
62. |
S. Sasaki, Y. Takahashi, H. Tadokoro, Structural studies of polyformals. II. Crystal structure of poly-1, 3-dioxolane:modification II. J. Polym. Sci. Polym. Phys. Ed. 10, 2363-2378 ( 1972). https://doi.org/10.1002/pol.1972.180101206
|
63. |
|
64. |
Q. Zhao, X. Liu, S. Stalin, K. Khan, L.A. Archer, Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 4, 365-373 ( 2019). https://doi.org/10.1038/s41560-019-0349-7
|
65. |
J. Zhou, T. Qian, J. Liu, M. Wang, L. Zhang et al., High-safety all-solid-state lithium-metal battery with high-ionic-conductivity thermoresponsive solid polymer electrolyte. Nano Lett. 19, 3066-3073 ( 2019). https://doi.org/10.1021/acs.nanolett.9b00450
|
66. |
C.-Z. Zhao, Q. Zhao, X. Liu, J. Zheng, S. Stalin et al., Rechargeable lithium metal batteries with an In-built solid-state polymer electrolyte and a high voltage/loading Ni-rich layered cathode. Adv. Mater. 32, e1905629 ( 2020). https://doi.org/10.1002/adma.201905629
|
67. |
Y. Huang, S. Liu, Q. Chen, K. Jiao, B. Ding et al., Constructing highly conductive and thermomechanical stable quasi-solid electrolytes by self-polymerization of liquid electrolytes within porous polyimide nanofiber films. Adv. Funct. Mater. 32, 2201496 ( 2022). https://doi.org/10.1002/adfm.202201496
|
68. |
H. Yang, B. Zhang, M. Jing, X. Shen, L. Wang et al., In situ catalytic polymerization of a highly homogeneous PDOL composite electrolyte for long-cycle high-voltage solid-state lithium batteries. Adv. Energy Mater. 12, 2270162 ( 2022). https://doi.org/10.1002/aenm.202270162
|
69. |
H. Xu, J. Zhang, H. Zhang, J. Long, L. Xu et al., In situ topological interphases boosting stable solid-state lithium metal batteries. Adv. Energy Mater. 13, 2204411 ( 2023). https://doi.org/10.1002/aenm.202204411
|
70. |
P.H. Plesch, P.H. Westermann, The polymerization of 1,3-dioxolane. I. Structure of the polymer and thermodynamics of its formation. J. Polym. Sci C Polym. Symp. 16, 3837-3843 ( 1967). https://doi.org/10.1002/polc.5070160724
|
71. |
|
72. |
H. Xu, H. Zhang, J. Ma, G. Xu, T. Dong et al., Overcoming the challenges of 5 V spinel LiNi 0.5Mn 1.5O 4 cathodes with solid polymer electrolytes. ACS Energy Lett. 4, 2871-2886 ( 2019). https://doi.org/10.1021/acsenergylett.9b01871
|
73. |
G.H. Newman, R.W. Francis, L.H. Gaines, B.M.L. Rao, Hazard investigations of LiClO 4/dioxolane electrolyte. J. Electrochem. Soc. 127, 2025-2027 ( 1980). https://doi.org/10.1149/1.2130056
|
74. |
Q. Liu, L. Wang, X. He, Toward practical solid-state polymer lithium batteries by in situ polymerization process: a review. Adv. Energy Mater. 13, 2300798 ( 2023). https://doi.org/10.1002/aenm.202300798
|
75. |
Q. Liu, B. Cai, S. Li, Q. Yu, F. Lv et al., Long-cycling and safe lithium metal batteries enabled by the synergetic strategy of ex situ anodic pretreatment and an in-built gel polymer electrolyte. J. Mater. Chem. A 8, 7197-7204 ( 2020). https://doi.org/10.1039/D0TA02148B
|
76. |
S. Wen, C. Luo, Q. Wang, Z. Wei, Y. Zeng et al., Integrated design of ultrathin crosslinked network polymer electrolytes for flexible and stable all-solid-state lithium batteries. Energy Storage Mater. 47, 453-461 ( 2022). https://doi.org/10.1016/j.ensm.2022.02.035
|
77. |
H. Cheng, J. Zhu, H. Jin, C. Gao, H. Liu et al., In situ initiator-free gelation of highly concentrated lithium bis(fluorosulfonyl)imide-1, 3-dioxolane solid polymer electrolyte for high performance lithium-metal batteries. Mater. Today Energy 20, 100623 ( 2021). https://doi.org/10.1016/j.mtener.2020.100623
|
78. |
J. Zheng, W. Zhang, C. Huang, Z. Shen, X. Wang et al., In-situ polymerization with dual-function electrolyte additive toward future lithium metal batteries. Mater. Today Energy 26, 100984 ( 2022). https://doi.org/10.1016/j.mtener.2022.100984
|
79. |
W. Li, J. Gao, H. Tian, X. Li, S. He et al., SnF 2-catalyzed formation of polymerized dioxolane as solid electrolyte and its thermal decomposition behavior. Angew. Chem. Int. Ed. 61, e202114805 ( 2022). https://doi.org/10.1002/anie.202114805
|
80. |
S. Zheng, Y. Chen, K. Chen, S. Yang, R. Bagherzadeh et al., In situ construction of polyether-based composite electrolyte with bi-phase ion conductivity and stable electrolyte/electrode interphase for solid-state lithium metal batteries. J. Mater. Chem. A 10, 19641-19648 ( 2022). https://doi.org/10.1039/D2TA02229J
|
81. |
Z. Li, W. Tang, Y. Deng, M. Zhou, X. Wang et al., Enabling highly stable lithium metal batteries by using dual-function additive catalyzed in-built quasi-solid-state polymer electrolytes. J. Mater. Chem. A 10, 23047-23057 ( 2022). https://doi.org/10.1039/D2TA06153H
|
82. |
S. Wang, L. Zhou, M.K. Tufail, L. Yang, P. Zhai et al., In-Situ synthesized Non-flammable gel polymer electrolyte enable highly safe and Dendrite-Free lithium metal batteries. Chem. Eng. J. 415, 128846 ( 2021). https://doi.org/10.1016/j.cej.2021.128846
|
83. |
J. Xiang, Y. Zhang, B. Zhang, L. Yuan, X. Liu et al., A flame-retardant polymer electrolyte for high performance lithium metal batteries with an expanded operation temperature. Energy Environ. Sci. 14, 3510-3521 ( 2021). https://doi.org/10.1039/D1EE00049G
|
84. |
J. Zhao, M. Li, H. Su, Y. Liu, P. Bai et al., In situ fabricated non-flammable quasi-solid electrolytes for Li-metal batteries. Small Meth. 7, 2300228 ( 2023). https://doi.org/10.1002/smtd.202300228
|
85. |
J. Wei, H. Yue, Z. Shi, Z. Li, X. Li et al., In situ gel polymer electrolyte with inhibited lithium dendrite growth and enhanced interfacial stability for lithium-metal batteries. ACS Appl. Mater. Interfaces 13, 32486-32494 ( 2021). https://doi.org/10.1021/acsami.1c07032
|
86. |
M. Xie, Y. Wu, Y. Liu, P.P. Yu, R. Jia et al., Pathway of in situ polymerization of 1, 3-dioxolane in LiPF 6 electrolyte on Li metal anode. Mater. Today Energy 21, 100730 ( 2021). https://doi.org/10.1016/j.mtener.2021.100730
|
87. |
A. Hu, Z. Liao, J. Huang, Y. Zhang, Q. Yang et al., In-situ construction of dual lithium-ion migration channels in polymer electrolytes for lithium metal batteries. Chem. Eng. J. 448, 137661 ( 2022). https://doi.org/10.1016/j.cej.2022.137661
|
88. |
P. Cheng, H. Zhang, Q. Ma, W. Feng, H. Yu et al., Highly salt-concentrated electrolyte comprising lithium bis(fluorosulfonyl)imide and 1, 3-dioxolane-based ether solvents for 4-V-class rechargeable lithium metal cell. Electrochim. Acta 363, 137198 ( 2020). https://doi.org/10.1016/j.electacta.2020.137198
|
89. |
G. Yang, W. Hou, Y. Zhai, Z. Chen, C. Liu et al., Polymeric concentrated electrolyte enables simultaneous stabilization of electrode/electrolyte interphases for quasi-solid-state lithium metal batteries. EcoMat 5, e12325 ( 2023). https://doi.org/10.1002/eom2.12325
|
90. |
Y. Wu, J. Ma, H. Jiang, L. Wang, F. Zhang et al., Confined in situ polymerization of poly(1, 3-dioxolane) and poly(vinylene carbonate)-based quasi-solid polymer electrolyte with improved uniformity for lithium metal batteries. Mater. Today Energy 32, 101239 ( 2023). https://doi.org/10.1016/j.mtener.2022.101239
|
91. |
G. Yang, Y. Zhai, J. Yao, S. Song, L. Lin et al., Synthesis and properties of poly(1, 3-dioxolane) in situ quasi-solid-state electrolytes via a rare-earth triflate catalyst. Chem. Commun. 57, 7934-7937 ( 2021). https://doi.org/10.1039/d1cc02916a
|
92. |
L. Zhang, H. Gao, S. Xiao, J. Li, T. Ma et al., In-situ construction of ceramic-polymer all-solid-state electrolytes for high-performance room-temperature lithium metal batteries. ACS Mater. Lett. 4, 1297-1305 ( 2022). https://doi.org/10.1021/acsmaterialslett.2c00238
|
93. |
|
94. |
Y.-K. Han, J. Yoo, T. Yim, Distinct reaction characteristics of electrolyte additives for high-voltage lithium-ion batteries: tris(trimethylsilyl) phosphite, borate, and phosphate. Electrochim. Acta 215, 455-465 ( 2016). https://doi.org/10.1016/j.electacta.2016.08.131
|
95. |
Y. Liu, X. Tao, Y. Wang, C. Jiang, C. Ma et al., Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375, 739-745 ( 2022). https://doi.org/10.1126/science.abn1818
|
96. |
|
97. |
P. Zhai, T. Wang, H. Jiang, J. Wan, Y. Wei et al., 3D artificial solid-electrolyte interphase for lithium metal anodes enabled by insulator-metal-insulator layered heterostructures. Adv. Mater. 33, e2006247 ( 2021). https://doi.org/10.1002/adma.202006247
|
98. |
|
99. |
H. Xie, C. Yang, Y. Ren, S. Xu, T.R. Hamann et al., Amorphous-carbon-coated 3D solid electrolyte for an electro-chemomechanically stable lithium metal anode in solid-state batteries. Nano Lett. 21, 6163-6170 ( 2021). https://doi.org/10.1021/acs.nanolett.1c01748
|
100. |
Y. Wang, Z. Wang, L. Zhao, Q. Fan, X. Zeng et al., Lithium metal electrode with increased air stability and robust solid electrolyte interphase realized by silane coupling agent modification. Adv. Mater. 33, e2008133 ( 2021). https://doi.org/10.1002/adma.202008133
|
101. |
H. Wan, Z. Wang, S. Liu, B. Zhang, X. He et al., Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design. Nat. Energy 8, 473-481 ( 2023). https://doi.org/10.1038/s41560-023-01231-w
|
102. |
P. Jiang, J. Cao, B. Wei, G. Qian, S. Wang et al., LiF involved interphase layer enabling thousand cycles of LAGP-based solid-state Li metal batteries with 80% capacity retention. Energy Storage Mater. 48, 145-154 ( 2022). https://doi.org/10.1016/j.ensm.2022.03.017
|
103. |
J. Li, H. Hu, W. Fang, J. Ding, D. Yuan et al., Impact of fluorine-based lithium salts on SEI for all-solid-state PEO-based lithium metal batteries. Adv. Funct. Mater. 33, 2303718 ( 2023). https://doi.org/10.1002/adfm.202303718
|
104. |
C. Guo, K. Du, R. Tao, Y. Guo, S. Yao et al., Inorganic filler enhanced formation of stable inorganic-rich solid electrolyte interphase for high performance lithium metal batteries. Adv. Funct. Mater. 33, 2301111 ( 2023). https://doi.org/10.1002/adfm.202301111
|
105. |
H. Sun, X. Xie, Q. Huang, Z. Wang, K. Chen et al., Fluorinated poly-oxalate electrolytes stabilizing both anode and cathode interfaces for all-solid-state Li/NMC811 batteries. Angew. Chem. Int. Ed. 60, 18335-18343 ( 2021). https://doi.org/10.1002/anie.202107667
|
106. |
J. Xie, S.-Y. Sun, X. Chen, L.-P. Hou, B.-Q. Li et al., Fluorinating the solid electrolyte interphase by rational molecular design for practical lithium-metal batteries. Angew. Chem. Int. Ed. 61, e202204776 ( 2022). https://doi.org/10.1002/anie.202204776
|
107. |
A. Hu, W. Chen, X. Du, Y. Hu, T. Lei et al., An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci. 14, 4115-4124 ( 2021). https://doi.org/10.1039/D1EE00508A
|
108. |
X. Pei, Y. Li, T. Ou, X. Liang, Y. Yang et al., Li-N interaction induced deep eutectic gel polymer electrolyte for high performance lithium-metal batteries. Angew. Chem. Int. Ed. 61, e202205075 ( 2022). https://doi.org/10.1002/anie.202205075
|
109. |
X. Yi, Y. Guo, S. Chi, S. Pan, C. Geng et al., Surface Li 2CO 3 mediated phosphorization enables compatible interfaces of composite polymer electrolyte for solid-state lithium batteries. Adv. Funct. Mater. 33, 2303574 ( 2023). https://doi.org/10.1002/adfm.202303574
|
110. |
M.-X. Jing, H. Yang, C. Han, F. Chen, L.-K. Zhang et al., Synergistic enhancement effects of LLZO fibers and interfacial modification for polymer solid electrolyte on the ambient-temperature electrochemical performances of solid-state battery. J. Electrochem. Soc. 166, A3019-A3027 ( 2019). https://doi.org/10.1149/2.1171913jes
|
111. |
M.-X. Jing, H. Yang, C. Han, F. Chen, W.-Y. Yuan et al., Improving room-temperature electrochemical performance of solid-state lithium battery by using electrospun La 2Zr 2O 7 fibers-filled composite solid electrolyte. Ceram. Int. 45, 18614-18622 ( 2019). https://doi.org/10.1016/j.ceramint.2019.06.085
|
112. |
J.Y. Kim, O.B. Chae, M. Wu, E. Lim, G. Kim et al., Extraordinary dendrite-free Li deposition on highly uniform facet wrinkled Cu substrates in carbonate electrolytes. Nano Energy 82, 105736 ( 2021). https://doi.org/10.1016/j.nanoen.2020.105736
|
113. |
J. Wang, Q. Kang, J. Yuan, Q. Fu, C. Chen et al., Dendrite-free lithium and sodium metal anodes with deep plating/stripping properties for lithium and sodium batteries. Carbon Energy 3, 153-166 ( 2021). https://doi.org/10.1002/cey2.94
|
114. |
J. Duan, L. Huang, T. Wang, Y. Huang, H. Fu et al., Shaping the contact between Li metal anode and solid-state electrolytes. Adv. Funct. Mater. 30, 1908701 ( 2020). https://doi.org/10.1002/adfm.201908701
|
115. |
Q. Li, S. Zhu, Y. Lu, 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv. Funct. Mater. 27, 1606422 ( 2017). https://doi.org/10.1002/adfm.201606422
|
116. |
Q. Wu, M. Fang, S. Jiao, S. Li, S. Zhang et al., Phase regulation enabling dense polymer-based composite electrolytes for solid-state lithium metal batteries. Nat. Commun. 14, 6296 ( 2023). https://doi.org/10.1038/s41467-023-41808-3
|
117. |
J. Li, Y. Ji, H. Song, S. Chen, S. Ding et al., Insights into the interfacial degradation of high-voltage all-solid-state lithium batteries. Nano-Micro Lett. 14, 191 ( 2022). https://doi.org/10.1007/s40820-022-00936-z
|
118. |
Y. Ma, J.H. Teo, F. Walther, Y. Ma, R. Zhang et al., Advanced nanoparticle coatings for stabilizing layered Ni-rich oxide cathodes in solid-state batteries. Adv. Funct. Mater. 32, 2270135 ( 2022). https://doi.org/10.1002/adfm.202270135
|
119. |
W. Bao, G. Qian, L. Zhao, Y. Yu, L. Su et al., Simultaneous enhancement of interfacial stability and kinetics of single-crystal LiNi 0.6Mn 0.2Co 0.2O 2 through optimized surface coating and doping. Nano Lett. 20, 8832-8840 ( 2020). https://doi.org/10.1021/acs.nanolett.0c03778
|
120. |
J. Zhao, J. Zhang, P. Hu, J. Ma, X. Wang et al., A sustainable and rigid-flexible coupling cellulose-supported poly(propylene carbonate) polymer electrolyte towards 5 V high voltage lithium batteries. Electrochim. Acta 188, 23-30 ( 2016). https://doi.org/10.1016/j.electacta.2015.11.088
|
121. |
|
122. |
L.-X. Li, R. Li, Z.-H. Huang, M.-Q. Liu, J. Xiang et al., High-performance gel electrolyte for enhanced interface compatibility and lithium metal stability in high-voltage lithium battery. Colloids Surf. A Physicochem. Eng. Aspects 651, 129665 ( 2022). https://doi.org/10.1016/j.colsurfa.2022.129665
|
123. |
Y. Liu, Y. Xu, Porous membrane host-derived in situ polymer electrolytes with double-stabilized electrode interface enable long cycling lithium metal batteries. Chem. Eng. J. 433, 134471 ( 2022). https://doi.org/10.1016/j.cej.2021.134471
|
124. |
|
125. |
J. Ma, X. Feng, Y. Wu, Y. Wang, P. Liu et al., Stable sodium anodes for sodium metal batteries (SMBs) enabled by in situ formed quasi solid-state polymer electrolyte. J. Energy Chem. 77, 290-299 ( 2023). https://doi.org/10.1016/j.jechem.2022.09.040
|
126. |
S. Song, W. Gao, G. Yang, Y. Zhai, J. Yao et al., Hybrid poly-ether/carbonate ester electrolyte engineering enables high oxidative stability for quasi-solid-state lithium metal batteries. Mater. Today Energy 23, 100893 ( 2022). https://doi.org/10.1016/j.mtener.2021.100893
|
127. |
K. Khan, Z. Tu, Q. Zhao, C. Zhao, L.A. Archer, Synthesis and properties of poly-ether/ethylene carbonate electrolytes with high oxidative stability. Chem. Mater. 31, 8466-8472 ( 2019). https://doi.org/10.1021/acs.chemmater.9b02823
|
128. |
J. Yu, X. Lin, J. Liu, J.T.T. Yu, M.J. Robson et al., In situ fabricated quasi-solid polymer electrolyte for high-energy-density lithium metal battery capable of subzero operation. Adv. Energy Mater. 12, 2102932 ( 2022). https://doi.org/10.1002/aenm.202102932
|
129. |
H. Yang, M.-X. Jing, H.-P. Li, W.-Y. Yuan, B. Deng et al., ‘Environment-friendly’ polymer solid electrolyte membrane via a rapid surface-initiating polymeration strategy. Chem. Eng. J. 421, 129710 ( 2021). https://doi.org/10.1016/j.cej.2021.129710
|
130. |
Z.K. Liu, J. Guan, H.X. Yang, P.X. Sun, N.W. Li et al., Ternary-salt solid polymer electrolyte for high-rate and long-life lithium metal batteries. Chem. Commun. 58, 10973-10976 ( 2022). https://doi.org/10.1039/D2CC04128F
|
131. |
L.-X. Li, R. Li, Z.-H. Huang, H. Yang, M.-Q. Liu et al., A multifunctional gradient solid electrolyte remarkably improving interface compatibility and ion transport in solid-state lithium battery. ACS Appl. Mater. Interfaces 14, 30786-30795 ( 2022). https://doi.org/10.1021/acsami.2c05578
|
132. |
J. Ma, Y. Wu, H. Jiang, X. Yao, F. Zhang et al., In situ directional polymerization of poly(1, 3-dioxolane) solid electrolyte induced by cellulose paper-based composite separator for lithium metal batteries. Energy Environ. Mater. 6, 12370 ( 2023). https://doi.org/10.1002/eem2.12370
|
133. |
X. Li, L. Cong, S. Ma, S. Shi, Y. Li et al., Low resistance and high stable solid-liquid electrolyte interphases enable high-voltage solid-state lithium metal batteries. Adv. Funct. Mater. 31, 2010611 ( 2021). https://doi.org/10.1002/adfm.202010611
|
134. |
|
135. |
J. Sun, X. Yao, Y. Li, Q. Zhang, C. Hou et al., Composite solid electrolytes: facilitating interfacial stability via bilayer heterostructure solid electrolyte toward high-energy, safe and adaptable lithium batteries. Adv. Energy Mater. 10, 2070131 ( 2020). https://doi.org/10.1002/aenm.202070131
|
136. |
Y. Liu, Y. Xu, Y. Zhang, C. Yu, X. Sun, Thin Li 1.3Al 0.3Ti 1.7(PO 4) 3-based composite solid electrolyte with a reinforced interface of in situ formed poly(1, 3-dioxolane) for lithium metal batteries. J. Colloid Interface Sci. 644, 53-63 ( 2023). https://doi.org/10.1016/j.jcis.2023.03.182
|
137. |
D. Chen, M. Zhu, P. Kang, T. Zhu, H. Yuan et al., Self-enhancing gel polymer electrolyte by in situ construction for enabling safe lithium metal battery. Adv. Sci. 9, e2103663 ( 2022). https://doi.org/10.1002/advs.202103663
|
138. |
Y. Li, W. Zhang, Q. Dou, K.W. Wong, K.M. Ng, Li 7La 3Zr 2O 12 ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries. J. Mater. Chem. A 7, 3391-3398 ( 2019). https://doi.org/10.1039/C8TA11449H
|
139. |
Z. Shen, J. Zhong, J. Chen, W. Xie, K. Yang et al., SiO 2 nanofiber composite gel polymer electrolyte by in situ polymerization for stable Li metal batteries. Chin. Chemical Lett. 34, 107370 ( 2023). https://doi.org/10.1016/j.cclet.2022.03.093
|
140. |
D. Lin, W. Liu, Y. Liu, H.R. Lee, P.C. Hsu et al., High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO 2 nanospheres in poly(ethylene oxide). Nano Lett. 16, 459-465 ( 2016). https://doi.org/10.1021/acs.nanolett.5b04117
|
141. |
Y.-Y. Lin, Y.-M. Chen, S.-S. Hou, J.-S. Jan, Y.-L. Lee et al., Diode-like gel polymer electrolytes for full-cell lithium ion batteries. J. Mater. Chem. A 5, 17476-17481 ( 2017). https://doi.org/10.1039/C7TA04886F
|
142. |
L.-H. Chen, Z.-Y. Huang, S.-L. Chen, R.-A. Tong, H.-L. Wang et al., In situ polymerization of 1, 3-dioxolane infiltrating 3D garnet framework with high ionic conductivity and excellent interfacial stability for integrated solid-state Li metal battery. Rare Met. 41, 3694-3705 ( 2022). https://doi.org/10.1007/s12598-022-02080-4
|
143. |
H. Huo, Y. Chen, J. Luo, X. Yang, X. Guo et al., Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries. Adv. Energy Mater. 9, 1804004 ( 2019). https://doi.org/10.1002/aenm.201804004
|
144. |
H. Liang, L. Wang, A. Wang, Y. Song, Y. Wu et al., Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Lett. 15, 42 ( 2023). https://doi.org/10.1007/s40820-022-00996-1
|
145. |
Z. Wan, D. Lei, W. Yang, C. Liu, K. Shi et al., All-solid-state batteries: low resistance-integrated all-solid-state battery achieved by Li 7La 3Zr 2O 12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder. Adv. Funct. Mater. 29, 1970006 ( 2019). https://doi.org/10.1002/adfm.201970006
|
146. |
X. Zhang, S. Wang, C. Xue, C. Xin, Y. Lin et al., Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes. Adv. Mater. 31, e1806082 ( 2019). https://doi.org/10.1002/adma.201806082
|
147. |
|
148. |
L. Han, C. Liao, X. Mu, N. Wu, Z. Xu et al., Flame-retardant ADP/PEO solid polymer electrolyte for dendrite-free and long-life lithium battery by generating Al P-rich SEI layer. Nano Lett. 21, 4447-4453 ( 2021). https://doi.org/10.1021/acs.nanolett.1c01137
|
149. |
B. Xu, X. Li, C. Yang, Y. Li, N.S. Grundish et al., Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities. J. Am. Chem. Soc. 143, 6542-6550 ( 2021). https://doi.org/10.1021/jacs.1c00752
|
150. |
W. Liu, D. Lin, J. Sun, G. Zhou, Y. Cui, Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 10, 11407-11413 ( 2016). https://doi.org/10.1021/acsnano.6b06797
|
151. |
N.W. Utomo, Y. Deng, Q. Zhao, X. Liu, L.A. Archer, Structure and evolution of quasi-solid-state hybrid electrolytes formed inside electrochemical cells. Adv. Mater. 34, e2110333 ( 2022). https://doi.org/10.1002/adma.202110333
|
152. |
S. Huo, L. Sheng, W. Xue, L. Wang, H. Xu et al., Challenges of polymer electrolyte with wide electrochemical window for high energy solid-state lithium batteries. InfoMat 5, e12394 ( 2023). https://doi.org/10.1002/inf2.12394
|
153. |
S. Xue, S. Yao, M. Jing, L. Zhu, X. Shen et al., Three-dimension ivy-structured MoS 2 nanoflakes-embedded nitrogen doped carbon nanofibers composite membrane as free-standing electrodes for Li/polysulfides batteries. Electrochim. Acta 299, 549-559 ( 2019). https://doi.org/10.1016/j.electacta.2019.01.044
|
154. |
S. Li, S. Pang, X. Wu, X. Qian, S. Yao et al., Improve redox activity and cycling stability of the lithium-sulfur batteries via in situ formation of a sponge-like separator modification layer. Int. J. Energy Res. 44, 4933-4943 ( 2020). https://doi.org/10.1002/er.5201
|
155. |
B. Deng, M.-X. Jing, R. Li, L.-X. Li, H. Yang et al., Integrating high ionic conductive PDOL solid/gel composite electrolyte for enhancement of interface combination and lithium dentrite inhibition of solid-state lithium battery. J. Colloid Interface Sci. 620, 199-208 ( 2022). https://doi.org/10.1016/j.jcis.2022.04.008
|
156. |
Z. Zhuang, Y. Tang, B. Ju, F. Tu, In situ synthesis of graphitic C 3N 4-poly(1, 3-dioxolane) composite interlayers for stable lithium metal anodes. Sustain. Energy Fuels 5, 2433-2440 ( 2021). https://doi.org/10.1039/D1SE00212K
|
157. |
X. Wang, X. Shen, P. Zhang, A.-J. Zhou, J.-B. Zhao, Promoted Li+ conduction in PEO-based all-solid-state electrolyte by hydroxyl-modified glass fiber fillers. Rare Met. 42, 875-884 ( 2023). https://doi.org/10.1007/s12598-022-02218-4
|
158. |
P. Yao, B. Zhu, H. Zhai, X. Liao, Y. Zhu et al., PVDF/palygorskite nanowire composite electrolyte for 4 V rechargeable lithium batteries with high energy density. Nano Lett. 18, 6113-6120 ( 2018). https://doi.org/10.1021/acs.nanolett.8b01421
|
159. |
J. Wu, T. Zhou, B. Zhong, Q. Wang, W. Liu et al., Designing anion-derived solid electrolyte interphase in a siloxane-based electrolyte for lithium-metal batteries. ACS Appl. Mater. Interfaces 14, 27873-27881 ( 2022). https://doi.org/10.1021/acsami.2c05098
|
160. |
J. Fu, X. Ji, J. Chen, L. Chen, X. Fan et al., Lithium nitrate regulated sulfone electrolytes for lithium metal batteries. Angew. Chem. Int. Ed. 59, 22194-22201 ( 2020). https://doi.org/10.1002/anie.202009575
|
161. |
F. Chen, M.-X. Jing, H. Yang, W.-Y. Yuan, M.-Q. Liu et al., Improved ionic conductivity and Li dendrite suppression of PVDF-based solid electrolyte membrane by LLZO incorporation and mechanical reinforcement. Ionics 27, 1101-1111 ( 2021). https://doi.org/10.1007/s11581-020-03891-0
|
162. |
J. Li, L. Zhu, J. Zhang, M. Jing, S. Yao et al., Approaching high performancePVDF-HFPbased solid composite electrolytes withLLTOnanorods for solid-state lithium-ion batteries. Int. J. Energy Res. 45, 7663-7674 ( 2021). https://doi.org/10.1002/er.6347
|
163. |
W.-W. Shao, J.-X. Li, L. Zhong, H.-F. Wu, M.-Q. Liu et al., A high ion conductive solid electrolyte film and interface stabilization strategy for solid-state Li-S battery. Colloids Surf. A Physicochem. Eng. Aspects 679, 132593 ( 2023). https://doi.org/10.1016/j.colsurfa.2023.132593
|
164. |
L. Han, L. Wang, Z. Chen, Y. Kan, Y. Hu et al., Incombustible polymer electrolyte boosting safety of solid-state lithium batteries: a review. Adv. Funct. Mater. 33, 2300892 ( 2023). https://doi.org/10.1002/adfm.202300892
|
165. |
C.-B. Jin, N. Yao, Y. Xiao, J. Xie, Z. Li et al., Taming solvent-solute interaction accelerates interfacial kinetics in low-temperature lithium-metal batteries. Adv. Mater. 35, 2208340 ( 2023). https://doi.org/10.1002/adma.202208340
|
166. |
J. Zhou, H. Ji, Y. Qian, J. Liu, T. Yan et al., Molecular simulations guided polymer electrolyte towards superior low-temperature solid lithium-metal batteries. ACS Appl. Mater. Interfaces 13, 48810-48817 ( 2021). https://doi.org/10.1021/acsami.1c14825
|
167. |
|
168. |
F. Liu, T. Li, Y. Yang, J. Yan, N. Li et al., Investigation on the copolymer electrolyte of poly(1, 3-dioxolane-co-formaldehyde). Macromol. Rapid Commun. 41, e2000047 ( 2020). https://doi.org/10.1002/marc.202000047
|
169. |
Y. Du, L. Zhao, C. Xiong, Z. Sun, S. Liu et al., Ameliorating structural and electrochemical properties of traditional poly-dioxolane electrolytes via integrated design of ultra-stable network for solid-state batteries. Energy Storage Mater. 56, 310-318 ( 2023). https://doi.org/10.1016/j.ensm.2023.01.017
|
170. |
J. Cui, Y. Du, L. Zhao, X. Li, Z. Sun et al., Thermal stable poly-dioxolane based electrolytes via a robust crosslinked network for dendrite-free solid-state li-metal batteries. Chem. Eng. J. 461, 141973 ( 2023). https://doi.org/10.1016/j.cej.2023.141973
|
171. |
D.F. Miranda, C. Versek, M.T. Tuominen, T.P. Russell, J.J. Watkins, Cross-linked Block copolymer/ionic liquid self-assembled blends for polymer gel electrolytes with high ionic conductivity and mechanical strength. Macromolecules 46, 9313-9323 ( 2013). https://doi.org/10.1021/ma401302r
|
172. |
S. Chen, B. Chen, J. Fan, J. Feng, Exploring the application of sustainable poly(propylene carbonate) copolymer in toughening epoxy thermosets. ACS Sustain. Chem. Eng. 3, 2077-2083 ( 2015). https://doi.org/10.1021/acssuschemeng.5b00343
|
173. |
|
174. |
J.H. Han, J.Y. Lee, D.H. Suh, Y.T. Hong, T.-H. Kim, Electrode-impregnable and cross-linkable poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock polymer electrolytes with high ionic conductivity and a large voltage window for flexible solid-state supercapacitors. ACS Appl. Mater. Interfaces 9, 33913-33924 ( 2017). https://doi.org/10.1021/acsami.7b09909
|