1. |
ASHRAE. Standard 55-2017. “Thermal environmental conditions for human occupancy”. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (2017)
|
2. |
ASHRAE. Standard 55-1992. “Thermal environmental conditions for human occupancy”. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (1992)
|
3. |
A. Alahmer, M. Omar, Omar, Vehicular cabins’ thermal comfort zones; fanger and berkley modeling. Veh. Eng. 1(1), 19-32 (2013)
|
4. |
|
5. |
|
6. |
|
7. |
|
8. |
The Building Technologies Office (BTO) within the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. Buildings energy data book (2011).
|
9. |
|
10. |
|
11. |
|
12. |
|
13. |
M. Rothmaier, M. Weder, A. Meyer-Heim, J. Kesselring, Design and performance of personal cooling garments based on three-layer laminates. Med. Biol. Eng. Comput. 46, 825-832 ( 2008). https://doi.org/10.1007/s11517-008-0363-6
|
14. |
M. Zhao, C. Gao, F. Wang, K. Kuklane, I. Holmér et al., A study on local cooling of garments with ventilation fans and openings placed at different torso sites. Int. J. Ind. Ergon. 43, 232-237 ( 2013). https://doi.org/10.1016/j.ergon.2013.01.001
|
15. |
C. Al Sayed, L. Vinches, O. Dupuy, W. Douzi, B. Dugue et al., Air/CO 2 cooling garment: description and benefits of use for subjects exposed to a hot and humid climate during physical activities. Int. J. Min. Sci. Technol. 29, 899-903 ( 2019). https://doi.org/10.1016/j.ijmst.2019.02.010
|
16. |
|
17. |
G. Bartkowiak, A. Dąbrowska, A. Greszta, Development of smart textile materials with shape memory alloys for application in protective clothing. Materials 13, 689 ( 2020). https://doi.org/10.3390/ma13030689
|
18. |
S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu et al., Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373, 692-696 ( 2021). https://doi.org/10.1126/science.abi5484
|
19. |
|
20. |
J. Wu, R. Hu, S. Zeng, W. Xi, S. Huang et al., Flexible and robust biomaterial microstructured colored textiles for personal thermoregulation. ACS Appl. Mater. Interfaces 12, 19015-19022 ( 2020). https://doi.org/10.1021/acsami.0c02300
|
21. |
|
22. |
|
23. |
R. Hu, Y. Liu, S. Shin, S. Huang, X. Ren et al., Emerging materials and strategies for personal thermal management. Adv. Energy Mater. 10, 1903921 ( 2020). https://doi.org/10.1002/aenm.201903921
|
24. |
|
25. |
B. Yang, X. Ding, F. Wang, A. Li, A review of intensified conditioning of personal micro-environments: moving closer to the human body. Energy Built Environ. 2, 260-270 ( 2021). https://doi.org/10.1016/j.enbenv.2020.06.007
|
26. |
|
27. |
|
28. |
H. Wu, X.-L. Shi, J. Duan, Q. Liu, Z.-G. Chen, Advances in Ag 2Se-based thermoelectrics from materials to applications. Energy Environ. Sci. 16, 1870-1906 ( 2023). https://doi.org/10.1039/d3ee00378g
|
29. |
H. Wu, X.-L. Shi, Y. Mao, M. Li, W.-D. Liu et al., Optimized thermoelectric performance and plasticity of ductile semiconductor Ag 2S 0.5Se 0.5 via dual-phase engineering. Adv. Energy Mater. 13, 2302551 ( 2023). https://doi.org/10.1002/aenm.202302551
|
30. |
|
31. |
Y. Lin, Q. Kang, Y. Liu, Y. Zhu, P. Jiang et al., Flexible, highly thermally conductive and electrically insulating phase change materials for advanced thermal management of 5G base stations and thermoelectric generators. Nano-Micro Lett. 15, 31 ( 2023). https://doi.org/10.1007/s40820-022-01003-3
|
32. |
H. Su, P. Lin, H. Lu, X. Zhao, X. Sheng et al., Janus-type hydroxyapatite-incorporated kevlar Aerogel@Kevlar aerogel supported phase-change material gel toward wearable personal thermal management. ACS Appl. Mater. Interfaces 14, 12617-12629 ( 2022). https://doi.org/10.1021/acsami.1c23774
|
33. |
H. Liu, F. Zhou, X. Shi, K. Sun, Y. Kou et al., A thermoregulatory flexible phase change nonwoven for all-season high-efficiency wearable thermal management. Nano Micro Lett. 15, 29 ( 2023). https://doi.org/10.1007/s40820-022-00991-6
|
34. |
J. Wu, M. Wang, L. Dong, C. Zhu, J. Shi et al., Ultraflexible, breathable, and form-stable phase change fibrous membranes by green electrospinning for personal thermal management. ACS Sustain. Chem. Eng. 10, 7873-7882 ( 2022). https://doi.org/10.1021/acssuschemeng.2c00189
|
35. |
M.O. Faruk, A. Ahmed, M.A. Jalil, M.T. Islam, A.M. Shamim et al., Functional textiles and composite based wearable thermal devices for Joule heating: progress and perspectives. Appl. Mater. Today 23, 101025 ( 2021). https://doi.org/10.1016/j.apmt.2021.101025
|
36. |
|
37. |
W.-K. Jung, S.-M. Lee, S.-H. Ahn, J. Park, Development and assessment of a knitted shape memory alloy-based multifunctional elbow brace. J. Ind. Text. 51, 1989S-2009S ( 2022). https://doi.org/10.1177/15280837211056983
|
38. |
L. Wang, M. Pan, Y. Lu, W. Song, S. Liu et al., Developing smart fabric systems with shape memory layer for improved thermal protection and thermal comfort. Mater. Des. 221, 110922 ( 2022). https://doi.org/10.1016/j.matdes.2022.110922
|
39. |
H. He, J. Liu, Y. Wang, Y. Zhao, Y. Qin et al., An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing. ACS Nano 16, 2953-2967 ( 2022). https://doi.org/10.1021/acsnano.1c10144
|
40. |
K. Jin, M. Zhang, J. Wang, Z. Jin, J. Sun et al., Robust highly conductive fabric with fluorine-free healable superhydrophobicity for the efficient deicing of outdoor’s equipment. Colloids Surf. A Physicochem. Eng. Aspects 651, 129639 ( 2022). https://doi.org/10.1016/j.colsurfa.2022.129639
|
41. |
P. Yotprayoonsak, N. Anusak, J. Virtanen, V. Kangas, V. Promarak, Facile fabrication of flexible and conductive AuNP/DWCNT fabric with enhanced Joule heating efficiency via spray coating route. Microelectron. Eng. 255, 111718 ( 2022). https://doi.org/10.1016/j.mee.2022.111718
|
42. |
J. Tan, Q. Yang, G. Hu, H. Zhang, L. Pei et al., Experimental study on the temperature-sensitive behavior of poly-n-isopropylacrylamide/graphene oxide composites and the flexible conductive cotton fabrics. Polym. Test. 110, 107563 ( 2022). https://doi.org/10.1016/j.polymertesting.2022.107563
|
43. |
P. Tang, Z. Deng, Y. Zhang, L.-X. Liu, Z. Wang et al., Tough, strong, and conductive graphene fibers by optimizing surface chemistry of graphene oxide precursor. Adv. Funct. Mater. 32, 2112156 ( 2022). https://doi.org/10.1002/adfm.202112156
|
44. |
L. Yang, L. Pan, H. Xiang, X. Fei, M. Zhu, Organic-inorganic hybrid conductive network to enhance the electrical conductivity of graphene-hybridized polymeric fibers. Chem. Mater. 34, 2049-2058 ( 2022). https://doi.org/10.1021/acs.chemmater.1c02754
|
45. |
H. Yu, P. Guo, M. Qin, G. Han, L. Chen et al., Highly thermally conductive polymer composite enhanced by two-level adjustable boron nitride network with leaf venation structure. Compos. Sci. Technol. 222, 109406 ( 2022). https://doi.org/10.1016/j.compscitech.2022.109406
|
46. |
|
47. |
|
48. |
Z. Duan, M. Wang, X. Dong, J. Liu, X. Zhao, Experimental and numerical investigation of wicking and evaporation performance of fibrous materials for evaporative cooling. Energy Build. 255, 111675 ( 2022). https://doi.org/10.1016/j.enbuild.2021.111675
|
49. |
H. Gao, A. Shawn Deaton, R. Barker, A new test method for evaluating the evaporative cooling efficiency of fabrics using a dynamic sweating hot plate. Meas. Sci. Technol. 33, 125601 ( 2022). https://doi.org/10.1088/1361-6501/ac84f7
|
50. |
|
51. |
L. Cai, A.Y. Song, W. Li, P.-C. Hsu, D. Lin et al., Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 30, e1802152 ( 2018). https://doi.org/10.1002/adma.201802152
|
52. |
|
53. |
|
54. |
J.P. Bijarniya, J. Sarkar, P. Maiti, Review on passive daytime radiative cooling: fundamentals, recent researches, challenges and opportunities. Renew. Sustain. Energy Rev. 133, 110263 ( 2020). https://doi.org/10.1016/j.rser.2020.110263
|
55. |
Y. Wang, T. Wang, J. Liang, J. Wu, M. Yang et al., Controllable-morphology polymer blend photonic metafoam for radiative cooling. Mater. Horiz. 10, 5060-5070 ( 2023). https://doi.org/10.1039/d3mh01008b
|
56. |
Y. Jung, M. Kim, T. Kim, J. Ahn, J. Lee et al., Functional materials and innovative strategies for wearable thermal management applications. Nano-Micro Lett. 15, 160 ( 2023). https://doi.org/10.1007/s40820-023-01126-1
|
57. |
M. Zhou, S. Tan, J. Wang, Y. Wu, L. Liang et al., “three-in-one” multi-scale structural design of carbon fiber-based composites for personal electromagnetic protection and thermal management. Nano Micro Lett. 15, 176 ( 2023). https://doi.org/10.1007/s40820-023-01144-z
|
58. |
|
59. |
L. Lei, S. Shi, D. Wang, S. Meng, J.-G. Dai et al., Recent advances in thermoregulatory clothing: materials, mechanisms, and perspectives. ACS Nano 17, 1803-1830 ( 2023). https://doi.org/10.1021/acsnano.2c10279
|
60. |
|
61. |
J. Liang, J. Wu, J. Guo, H. Li, X. Zhou et al., Radiative cooling for passive thermal management towards sustainable carbon neutrality. Natl. Sci. Rev. 10, nwac208 ( 2023). https://doi.org/10.1093/nsr/nwac208
|
62. |
|
63. |
|
64. |
M. He, B. Zhao, X. Yue, Y. Chen, F. Qiu et al., Infrared radiative modulating textiles for personal thermal management: principle, design and application. Nano Energy 116, 108821 ( 2023). https://doi.org/10.1016/j.nanoen.2023.108821
|
65. |
D. Zhao, A. Aili, Y. Zhai, S. Xu, G. Tan et al., Radiative sky cooling: fundamental principles, materials, and applications. Appl. Phys. Rev. 6, 021306 ( 2019). https://doi.org/10.1063/1.5087281
|
66. |
A.R. Gentle, G.B. Smith, Radiative heat pumping from the Earth using surface phonon resonant nanoparticles. Nano Lett. 10, 373-379 ( 2010). https://doi.org/10.1021/nl903271d
|
67. |
A.P. Raman, M. Abou Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540-544 ( 2014). https://doi.org/10.1038/nature13883
|
68. |
|
69. |
|
70. |
J.K. Tong, X. Huang, S.V. Boriskina, J. Loomis, Y. Xu et al., Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photon. 2, 769-778 ( 2015). https://doi.org/10.1021/acsphotonics.5b00140
|
71. |
P.-C. Hsu, A.Y. Song, P.B. Catrysse, C. Liu, Y. Peng et al., Radiative human body cooling by nanoporous polyethylene textile. Science 353, 1019-1023 ( 2016). https://doi.org/10.1126/science.aaf5471
|
72. |
|
73. |
M.I. Iqbal, F. Sun, B. Fei, Q. Xia, X. Wang et al., Knit architecture for water-actuating woolen knitwear and its personalized thermal management. ACS Appl. Mater. Interfaces 13, 6298-6308 ( 2021). https://doi.org/10.1021/acsami.0c20868
|
74. |
X. Wang, X. Liu, Z. Li, H. Zhang, Z. Yang et al., Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling. Adv. Funct. Mater. 30, 1907562 ( 2020). https://doi.org/10.1002/adfm.201907562
|
75. |
|
76. |
|
77. |
T. Hoty, K.H. Lee, H. Zhang, E. Arens, T. Webster, Energy savings from extended air temperature setpoints and reductions in room air mixing. in International Conference on Environmental Ergonomics, Boston, 2-7 August, 2009.
|
78. |
|
79. |
|
80. |
Y. Peng, J. Chen, A.Y. Song, P.B. Catrysse, P.-C. Hsu et al., Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 1, 105-112 ( 2018). https://doi.org/10.1038/s41893-018-0023-2
|
81. |
|
82. |
Y. Ke, F. Wang, P. Xu, B. Yang, On the use of a novel nanoporous polyethylene (nanoPE) passive cooling material for personal thermal comfort management under uniform indoor environments. Build. Environ. 145, 85-95 ( 2018). https://doi.org/10.1016/j.buildenv.2018.09.021
|
83. |
|
84. |
H.G. Tompkins, T. Tiwald, C. Bungay, A.E. Hooper, Use of molecular vibrations to analyze very thin films with infrared ellipsometry. J. Phys. Chem. B 108, 3777-3780 ( 2004). https://doi.org/10.1021/jp035731a
|
85. |
R. Hu, N. Wang, L. Hou, J. Liu, Z. Cui et al., Bilayer nanoporous polyethylene membrane with anisotropic wettability for rapid water transportation/evaporation and radiative cooling. ACS Appl. Mater. Interfaces 14, 9833-9843 ( 2022). https://doi.org/10.1021/acsami.1c22974
|
86. |
|
87. |
F. Bäbler, Reflective pigment compositions go. U.S. Patent 6989056 (2006)
|
88. |
|
89. |
P. Jeevanandam, R.S. Mulukutla, M. Phillips, S. Chaudhuri, L.E. Erickson et al., Near infrared reflectance properties of metal oxide nanoparticles. J. Phys. Chem. C 111, 1912-1918 ( 2007). https://doi.org/10.1021/jp066363o
|
90. |
|
91. |
G.B. Smith, A. Gentle, P.D. Swift, A. Earp, N. Mronga, Coloured paints based on iron oxide and silicon oxide coated flakes of aluminium as the pigment, for energy efficient paint: optical and thermal experiments. Sol. Energy Mater. Sol. Cells 79, 179-197 ( 2003). https://doi.org/10.1016/s0927-0248(02)00410-5
|
92. |
D. Miao, S. Jiang, J. Liu, X. Ning, S. Shang et al., Fabrication of copper and titanium coated textiles for sunlight management. J. Mater. Sci. Mater. Electron. 28, 9852-9858 ( 2017). https://doi.org/10.1007/s10854-017-6739-3
|
93. |
|
94. |
|
95. |
F.L. Zhu, Q.Q. Feng, Preparation, thermal properties and permeabilities of aluminum-coated fabrics destined for thermal radiation protective clothing. Fire Mater. 44, 844-853 ( 2020). https://doi.org/10.1002/fam.2883
|
96. |
D. Miao, S. Jiang, S. Shang, Z. Chen, Highly transparent and infrared reflective AZO/Ag/AZO multilayer film prepared on PET substrate by RF magnetron sputtering. Vacuum 106, 1-4 ( 2014). https://doi.org/10.1016/j.vacuum.2014.02.021
|
97. |
J. Song, J. Qin, J. Qu, Z. Song, W. Zhang et al., The effects of particle size distribution on the optical properties of titanium dioxide rutile pigments and their applications in cool non-white coatings. Sol. Energy Mater. Sol. Cells 130, 42-50 ( 2014). https://doi.org/10.1016/j.solmat.2014.06.035
|
98. |
A. Wong, W.A. Daoud, H.-H. Liang, Y.S. Szeto, Application of rutile and anatase onto cotton fabric and their effect on the NIR reflection/surface temperature of the fabric. Sol. Energy Mater. Sol. Cells 134, 425-437 ( 2015). https://doi.org/10.1016/j.solmat.2014.12.011
|
99. |
|
100. |
H. Zhang, K.C.S. Ly, X. Liu, Z. Chen, M. Yan et al., Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc. Natl. Acad. Sci. U.S.A. 117, 14657-14666 ( 2020). https://doi.org/10.1073/pnas.2001802117
|
101. |
N.N. Shi, C.C. Tsai, M.J. Carter, J. Mandal, A.C. Overvig et al., Nanostructured fibers as a versatile photonic platform: radiative cooling and waveguiding through transverse Anderson localization. Light Sci. Appl. 7, 37 ( 2018). https://doi.org/10.1038/s41377-018-0033-x
|
102. |
X. Shan, L. Liu, Y. Wu, D. Yuan, J. Wang et al., Aerogel-functionalized thermoplastic polyurethane as waterproof, breathable freestanding films and coatings for passive daytime radiative cooling. Adv. Sci. 9, e2201190 ( 2022). https://doi.org/10.1002/advs.202201190
|
103. |
X. Ao, B. Li, B. Zhao, M. Hu, H. Ren et al., Self-adaptive integration of photothermal and radiative cooling for continuous energy harvesting from the Sun and outer space. Proc. Natl. Acad. Sci. U.S.A. 119, e 2120557119 ( 2022). https://doi.org/10.1073/pnas.2120557119
|
104. |
Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou et al., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062-1066 ( 2017). https://doi.org/10.1126/science.aai7899
|
105. |
|
106. |
Z. Chen, L. Zhu, A. Raman, S. Fan, Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle. Nat. Commun. 7, 13729 ( 2016). https://doi.org/10.1038/ncomms13729
|
107. |
Y.-N. Song, Y. Li, D.-X. Yan, J. Lei, Z.-M. Li, Novel passive cooling composite textile for both outdoor and indoor personal thermal management. Compos. Part A Appl. Sci. Manuf. 130, 105738 ( 2020). https://doi.org/10.1016/j.compositesa.2019.105738
|
108. |
Y.-N. Song, M.-Q. Lei, J. Lei, Z.-M. Li, A scalable hybrid fiber and its textile with pore and wrinkle structures for passive personal cooling. Adv. Mater. Technol. 5, 2000287 ( 2020). https://doi.org/10.1002/admt.202000287
|
109. |
B. Gu, K. Liang, T. Zhang, F. Qiu, D. Yang et al., Multifunctional laminated membranes with adjustable infrared radiation for personal thermal management applications. Cellulose 27, 8471-8483 ( 2020). https://doi.org/10.1007/s10570-020-03354-9
|
110. |
N.N. Shi, C.-C. Tsai, F. Camino, G.D. Bernard, N. Yu et al., Keeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science 349, 298-301 ( 2015). https://doi.org/10.1126/science.aab3564
|
111. |
S.Y. Jeong, C.Y. Tso, Y.M. Wong, C.Y.H. Chao, B. Huang, Daytime passive radiative cooling by ultra emissive bio-inspired polymeric surface. Sol. Energy Mater. Sol. Cells 206, 110296 ( 2020). https://doi.org/10.1016/j.solmat.2019.110296
|
112. |
Q. Liu, J. Huang, J. Zhang, Y. Hong, Y. Wan et al., Thermal, waterproof, breathable, and antibacterial cloth with a nanoporous structure. ACS Appl. Mater. Interfaces 10, 2026-2032 ( 2018). https://doi.org/10.1021/acsami.7b16422
|
113. |
M. Amjadi, K.-U. Kyung, I. Park, M. Sitti, Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26, 1678-1698 ( 2016). https://doi.org/10.1002/adfm.201504755
|
114. |
P.C. Hsu, X. Liu, C. Liu, X. Xie, H.R. Lee et al., Personal thermal management by metallic nanowire-coated textile. Nano Lett. 15, 365-371 ( 2015). https://doi.org/10.1021/nl5036572
|
115. |
Z. Yu, Y. Gao, X. Di, H. Luo, Cotton modified with silver-nanowires/polydopamine for a wearable thermal management device. RSC Adv. 6, 67771-67777 ( 2016). https://doi.org/10.1039/C6RA13104B
|
116. |
X. Yue, T. Zhang, D. Yang, F. Qiu, Z. Li et al., Ag nanoparticles coated cellulose membrane with high infrared reflection, breathability and antibacterial property for human thermal insulation. J. Colloid Interface Sci. 535, 363-370 ( 2019). https://doi.org/10.1016/j.jcis.2018.10.009
|
117. |
A. Hazarika, B.K. Deka, D. Kim, H.E. Jeong, Y.B. Park et al., Woven kevlar fiber/polydimethylsiloxane/reduced graphene oxide composite-based personal thermal management with freestanding Cu-Ni core-shell nanowires. Nano Lett. 18, 6731-6739 ( 2018). https://doi.org/10.1021/acs.nanolett.8b02408
|
118. |
J. Luo, S. Gao, H. Luo, L. Wang, X. Huang et al., Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics. Chem. Eng. J. 406, 126898 ( 2021). https://doi.org/10.1016/j.cej.2020.126898
|
119. |
A. Hazarika, B.K. Deka, D.C. Kim, A.P. Jaiswal, J. Seo et al., Multidimensional wearable self-powered personal thermal management with scalable solar heating and a triboelectric nanogenerator. Nano Energy 98, 107323 ( 2022). https://doi.org/10.1016/j.nanoen.2022.107323
|
120. |
J. Wu, M. Zhang, M. Su, Y. Zhang, J. Liang et al., Robust and flexible multimaterial aerogel fabric toward outdoor passive heating. Adv. Fiber Mater. 4, 1545-1555 ( 2022). https://doi.org/10.1007/s42765-022-00188-x
|
121. |
M.C. Larciprete, Y.S. Gloy, R. Li Voti, G. Cesarini, G. Leahu et al., Temperature dependent emissivity of different stainless steel textiles in the infrared range. Int. J. Therm. Sci. 113, 130-135 ( 2017). https://doi.org/10.1016/j.ijthermalsci.2016.12.001
|
122. |
|
123. |
L. Fei, Y. Yin, M. Yang, S. Zhang, C. Wang, Wearable solar energy management based on visible solar thermal energy storage for full solar spectrum utilization. Energy Storage Mater. 42, 636-644 ( 2021). https://doi.org/10.1016/j.ensm.2021.07.049
|
124. |
I. Ibrahim, D.H. Seo, A.M. McDonagh, H.K. Shon, L. Tijing, Semiconductor photothermal materials enabling efficient solar steam generation toward desalination and wastewater treatment. Desalination 500, 114853 ( 2021). https://doi.org/10.1016/j.desal.2020.114853
|
125. |
|
126. |
H. Jia, J. Zhu, Z. Li, X. Cheng, J. Guo, Design and optimization of a photo-thermal energy conversion model based on polar bear hair. Sol. Energy Mater. Sol. Cells 159, 345-351 ( 2017). https://doi.org/10.1016/j.solmat.2016.09.017
|
127. |
X. Yue, M. He, T. Zhang, D. Yang, F. Qiu, Laminated fibrous membrane inspired by polar bear pelt for outdoor personal radiation management. ACS Appl. Mater. Interfaces 12, 12285-12293 ( 2020). https://doi.org/10.1021/acsami.9b20865
|
128. |
E. Pakdel, W. Xie, J. Wang, S. Kashi, J. Sharp et al., Superhydrophobic natural melanin-coated cotton with excellent UV protection and personal thermal management functionality. Chem. Eng. J. 433, 133688 ( 2022). https://doi.org/10.1016/j.cej.2021.133688
|
129. |
|
130. |
J. Xu, S. Jiang, Y. Wang, S. Shang, D. Miao et al., Photo-thermal conversion and thermal insulation properties of ZrC coated polyester fabric. Fibres. Polym. 18, 1938-1944 ( 2017). https://doi.org/10.1007/s12221-017-1237-z
|
131. |
A.J. Fitzgerald, E. Berry, N.N. Zinovev, G.C. Walker, M.A. Smith et al., An introduction to medical imaging with coherent terahertz frequency radiation. Phys. Med. Biol. 47, R67-R84 ( 2002). https://doi.org/10.1088/0031-9155/47/7/201
|
132. |
H. Toyokawa, Y. Matsui, J. Uhara, H. Tsuchiya, S. Teshima et al., Promotive effects of far-infrared ray on full-thickness skin wound healing in rats. Exp. Biol. Med. 228, 724-729 ( 2003). https://doi.org/10.1177/153537020322800612
|
133. |
Y. Li, D.-X. Wu, J.-Y. Hu, S.-X. Wang, Novel infrared radiation properties of cotton fabric coated with nano Zn/ZnO particles. Colloids Surf. A Physicochem. Eng. Aspects 300, 140-144 ( 2007). https://doi.org/10.1016/j.colsurfa.2007.01.001
|
134. |
X. Hu, M. Tian, L. Qu, S. Zhu, G. Han, Multifunctional cotton fabrics with graphene/polyurethane coatings with far-infrared emission, electrical conductivity, and ultraviolet-blocking properties. Carbon 95, 625-633 ( 2015). https://doi.org/10.1016/j.carbon.2015.08.099
|
135. |
K. Qiu, A. Elhassan, T. Tian, X. Yin, J. Yu et al., Highly flexible, efficient, and sandwich-structured infrared radiation heating fabric. ACS Appl. Mater. Interfaces 12, 11016-11025 ( 2020). https://doi.org/10.1021/acsami.9b23099
|
136. |
|
137. |
P.-C. Hsu, C. Liu, A.Y. Song, Z. Zhang, Y. Peng et al., A dual-mode textile for human body radiative heating and cooling. Sci. Adv. 3, e1700895 ( 2017). https://doi.org/10.1126/sciadv.1700895
|
138. |
X. Yue, T. Zhang, D. Yang, F. Qiu, G. Wei et al., Multifunctional Janus fibrous hybrid membranes with sandwich structure for on-demand personal thermal management. Nano Energy 63, 103808 ( 2019). https://doi.org/10.1016/j.nanoen.2019.06.004
|
139. |
|
140. |
B. Dai, X. Li, T. Xu, X. Zhang, Radiative cooling and solar heating Janus films for personal thermal management. ACS Appl. Mater. Interfaces 14, 18877-18883 ( 2022). https://doi.org/10.1021/acsami.2c01370
|
141. |
K.C.S. Ly, X. Liu, X. Song, C. Xiao, P. Wang et al., A dual-mode infrared asymmetric photonic structure for all-season passive radiative cooling and heating. Adv. Funct. Mater. 32, 2203789 ( 2022). https://doi.org/10.1002/adfm.202203789
|
142. |
|
143. |
E. Kreit, L.M. Mäthger, R.T. Hanlon, P.B. Dennis, R.R. Naik et al., Biological versus electronic adaptive coloration: how can one inform the other? J. R. Soc. Interface. 10, 20120601 ( 2013). https://doi.org/10.1098/rsif.2012.0601
|
144. |
G.R.R. Bell, A.M. Kuzirian, S.L. Senft, L.M. Mäthger, T.J. Wardill et al., Chromatophore radial muscle fibers anchor in flexible squid skin. Invertebr. Biol. 132, 120-132 ( 2013). https://doi.org/10.1111/ivb.12016
|
145. |
M. Suzuki, T. Kimura, H. Ogawa, K. Hotta, K. Oka, Chromatophore activity during natural pattern expression by the squid Sepioteuthis lessoniana: contributions of miniature oscillation. PLoS ONE 6, e18244 ( 2011). https://doi.org/10.1371/journal.pone.0018244
|
146. |
|
147. |
C. Yu, Y. Li, X. Zhang, X. Huang, V. Malyarchuk et al., Adaptive optoelectronic camouflage systems with designs inspired by cephalopod skins. Proc. Natl. Acad. Sci. U.S.A. 111, 12998-13003 ( 2014). https://doi.org/10.1073/pnas.1410494111
|
148. |
C. Larson, B. Peele, S. Li, S. Robinson, M. Totaro et al., Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 351, 1071-1074 ( 2016). https://doi.org/10.1126/science.aac5082
|
149. |
|
150. |
E.M. Leung, M. Colorado Escobar, G.T. Stiubianu, S.R. Jim, A.L. Vyatskikh et al., A dynamic thermoregulatory material inspired by squid skin. Nat. Commun. 10, 1947 ( 2019). https://doi.org/10.1038/s41467-019-09589-w
|
151. |
G. Ye, Y. Wan, J. Wu, W. Zhuang, Z. Zhou et al., Multifunctional device integrating dual-temperature regulator for outdoor personal thermal comfort and triboelectric nanogenerator for self-powered human-machine interaction. Nano Energy 97, 107148 ( 2022). https://doi.org/10.1016/j.nanoen.2022.107148
|
152. |
|
153. |
|
154. |
T. Bera, E.J. Freeman, J.A. McDonough, R.J. Clements, A. Aladlaan et al., Liquid crystal elastomer microspheres as three-dimensional cell scaffolds supporting the attachment and proliferation of myoblasts. ACS Appl. Mater. Interfaces 7, 14528-14535 ( 2015). https://doi.org/10.1021/acsami.5b04208
|
155. |
Q. Zhang, Y. Lv, Y. Wang, S. Yu, C. Li et al., Temperature-dependent dual-mode thermal management device with net zero energy for year-round energy saving. Nat. Commun. 13, 4874 ( 2022). https://doi.org/10.1038/s41467-022-32528-1
|