1. |
|
2. |
|
3. |
|
4. |
S. Dol, R. Bhinge, SMART motor for industry 4.0. IEEMA IEEE Engineer Infinite Conference. 1-6 (2018). https://ieeexplore.ieee.org/document/8385291
URL
|
5. |
J. Jayakumar, B. Nagaraj, S. Chacko, P. Ajay, Conceptual implementation of artificial intelligent based E-mobility controller in smart city environment. Wirel. Commun. Mob. Comput. 2021, 5325116 (2021). https://doi.org/10.1155/2021/5325116
|
6. |
|
7. |
L. Komsiyska, T. Buchberger, S. Diehl, M. Ehrensberger, C. Hanzl et al., Critical review of intelligent battery systems: challenges, implementation, and potential for electric vehicles. Energies 14, 5989 ( 2021). https://doi.org/10.3390/en14185989
|
8. |
|
9. |
A. Kushima, K.P. So, C. Su, P. Bai, N. Kuriyama et al., Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams. Nano Energy 32, 271-279 ( 2017). https://doi.org/10.1016/j.nanoen.2016.12.001
|
10. |
D. Hu, G. Chen, J. Tian, N. Li, L. Chen et al., Unrevealing the effects of low temperature on cycling life of 21700-type cylindrical Li-ion batteries. J. Energy Chem. 60, 104-110 ( 2021). https://doi.org/10.1016/j.jechem.2020.12.024
|
11. |
|
12. |
|
13. |
X. Han, M. Ouyang, L. Lu, J. Li, Y. Zheng et al., A comparative study of commercial lithium ion battery cycle life in electrical vehicle: aging mechanism identification. J. Power. Sources 251, 38-54 ( 2014). https://doi.org/10.1016/j.jpowsour.2013.11.029
|
14. |
|
15. |
|
16. |
L.-Y. Zhu, L.-X. Ou, L.-W. Mao, X.-Y. Wu, Y.-P. Liu et al., Advances in noble metal-decorated metal oxide nanomaterials for chemiresistive gas sensors: overview. Nano-Micro Lett. 15, 89 ( 2023). https://doi.org/10.1007/s40820-023-01047-z
|
17. |
H. Zhao, W.-Y.A. Lam, L. Wang, H. Xu, W.A. Daoud et al., The significance of detecting imperceptible physical/chemical changes/reactions in lithium-ion batteries: a perspective. Energy Environ. Sci. 15, 2329-2355 ( 2022). https://doi.org/10.1039/D2EE01020H
|
18. |
Y. Plotnikov, J. Karp, A. Knobloch, C. Kapusta, D. Lin-Eddy, Current sensor for in-situ monitoring of swelling of Li-ion prismatic cells. AIP Conference Proceedings. Boise, Idaho. AIP Publishing LLC 1650, 434-442 ( 2015) https://doi.org/10.1063/1.4914639
|
19. |
W. Choi, Y. Seo, K. Yoo, T.J. Ko, J. Choi, Carbon nanotube-based strain sensor for excessive swelling detection of lithium-ion battery. in 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), 2356-2359 ( 2019). https://doi.org/10.1109/TRANSDUCERS.2019.8808477
|
20. |
A. Knobloch, C. Kapusta, J. Karp, Y. Plotnikov, J.B. Siegel et al., Fabrication of multimeasurand sensor for monitoring of a Li-ion battery. J. Electron. Packag. 140, 031002 ( 2018). https://doi.org/10.1115/1.4039861
|
21. |
|
22. |
|
23. |
J.P. Zheng, P. Andrei, L. Jin, J. Zheng, C. Zhang, Pre-lithiation strategies and energy density theory of lithium-ion and beyond lithium-ion batteries. J. Electrochem. Soc. 169, 040532 ( 2022). https://doi.org/10.1149/1945-7111/ac6540
|
24. |
|
25. |
W. Lee, S. Muhammad, C. Sergey, H. Lee, J. Yoon et al., Advances in the cathode materials for lithium rechargeable batteries. Angew. Chem. Int. Ed. 59, 2578-2605 ( 2020). https://doi.org/10.1002/anie.201902359
|
26. |
|
27. |
H. Cui, D. Ren, M. Yi, S. Hou, K. Yang et al., Operando monitoring of the open circuit voltage during electrolyte filling ensures high performance of lithium-ion batteries. Nano Energy 104, 107874 ( 2022). https://doi.org/10.1016/j.nanoen.2022.107874
|
28. |
L. Yang, H.-S. Chen, W.-L. Song, D. Fang, Effect of defects on diffusion behaviors of lithium-ion battery electrodes: in situ optical observation and simulation. ACS Appl. Mater. Interfaces 10, 43623-43630 ( 2018). https://doi.org/10.1021/acsami.8b15260
|
29. |
C. Modrzynski, V. Roscher, F. Rittweger, A. Ghannoum, P. Nieva, K.R. Riemschneider, Integrated optical fibers for simultaneous monitoring of the anode and the cathode in lithium ion batteries. 18th IEEE Sensors Conference. 19261568 ( 2019). https://doi.org/10.1109/SENSORS43011.2019.8956755
|
30. |
V. Roscher, K.-R. Riemschneider, Method and measurement setup for battery state determination using optical effects in the electrode material. IEEE Trans. Instrum. Meas. 67, 735-744 ( 2018). https://doi.org/10.1109/TIM.2017.2782018
|
31. |
|
32. |
S. Zhu, J. Han, T.-S. Pan, Y.-M. Wei, W.-L. Song et al., A novel designed visualized Li-ion battery for in situ measuring the variation of internal temperature. Extreme Mech. Lett. 37, 100707 ( 2020). https://doi.org/10.1016/j.eml.2020.100707
|
33. |
S. Rudolph, U. Schröder, I.M. Bayanov, K. Blenke, D. Hage, High resolution state of charge monitoring of vanadium electrolytes with IR optical sensor. J. Electroanal. Chem. 694, 17-22 ( 2013). https://doi.org/10.1016/j.jelechem.2013.01.042
|
34. |
C. Zhu, R.E. Gerald, J. Huang, Progress toward sapphire optical fiber sensors for high-temperature applications. IEEE Trans. Instrum. Meas. 69, 8639-8655 ( 2020). https://doi.org/10.1109/TIM.2020.3024462
|
35. |
A. Raghavan, P. Kiesel, L.W. Sommer, J. Schwartz, A. Lochbaum et al., Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: cell embedding method and performance. J. Power. Sources 341, 466-473 ( 2017). https://doi.org/10.1016/j.jpowsour.2016.11.104
|
36. |
J. Huang, L. Albero Blanquer, J. Bonefacino, E.R. Logan, D. Alves Dalla Corte et al., Operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors. Nat. Energy 5, 674-683 ( 2020). https://doi.org/10.1038/s41560-020-0665-y
|
37. |
Y.D. Su, Y. Preger, H. Burroughs, C. Sun, P.R. Ohodnicki, Fiber optic sensing technologies for battery management systems and energy storage applications. Sensors (Basel) 21, 1397 ( 2021). https://doi.org/10.3390/s21041397
|
38. |
Z. Miao, Y. Li, X. Xiao, Q. Sun, B. He et al., Direct optical fiber monitor on stress evolution of the sulfur-based cathodes for lithium-sulfur batteries. Energy Environ. Sci. 15, 2029-2038 ( 2022). https://doi.org/10.1039/D2EE00007E
|
39. |
J. Huang, L.A. Blanquer, C. Gervillié, J.-M. Tarascon, Distributed fiber optic sensing to assess In-live temperature imaging inside batteries: Rayleigh and FBGs. J. Electrochem. Soc. 168, 060520 ( 2021). https://doi.org/10.1149/1945-7111/ac03f0
|
40. |
|
41. |
J. Hedman, F. Björefors, Fiber optic monitoring of composite lithium iron phosphate cathodes in pouch cell batteries. ACS Appl. Energy Mater. 5, 870-881 ( 2022). https://doi.org/10.1021/acsaem.1c03304
|
42. |
|
43. |
J. Hedman, D. Nilebo, E. Larsson Langhammer, F. Björefors, Fibre optic sensor for characterisation of lithium-ion batteries. ChemSusChem 13, 5731-5739 ( 2020). https://doi.org/10.1002/cssc.202001709
|
44. |
C. Gardner, E. Langhammer, W. Du, D.J.L. Brett, P.R. Shearing et al., In-situ Li-ion pouch cell diagnostics utilising plasmonic based optical fibre sensors. Sensors 22, 738 ( 2022). https://doi.org/10.3390/s22030738
|
45. |
J. Lao, P. Sun, F. Liu, X. Zhang, C. Zhao et al., In situ plasmonic optical fiber detection of the state of charge of supercapacitors for renewable energy storage. Light. Sci. Appl. 7, 34 ( 2018). https://doi.org/10.1038/s41377-018-0040-y
|
46. |
Y. Yu, E. Vergori, D. Worwood, Y. Tripathy, Y. Guo et al., Distributed thermal monitoring of lithium ion batteries with optical fibre sensors. J. Energy Storage 39, 102560 ( 2021). https://doi.org/10.1016/j.est.2021.102560
|
47. |
M. Nascimento, S. Novais, M.S. Ding, M.S. Ferreira, S. Koch et al., Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries. J. Power. Sources 410-411, 1-9 ( 2019). https://doi.org/10.1016/j.jpowsour.2018.10.096
|
48. |
M.S. Wahl, L. Spitthoff, H.I. Muri, A. Jinasena, O.S. Burheim et al., The importance of optical fibres for internal temperature sensing in lithium-ion batteries during operation. Energies 14, 3617 ( 2021). https://doi.org/10.3390/en14123617
|
49. |
J. Huang, X. Han, F. Liu, C. Gervillié, L.A. Blanquer et al., Monitoring battery electrolyte chemistry via in-operando tilted fiber Bragg grating sensors. Energy Environ. Sci. 14, 6464-6475 ( 2021). https://doi.org/10.1039/D1EE02186A
|
50. |
G. Han, J. Yan, Z. Guo, D. Greenwood, J. Marco et al., A review on various optical fibre sensing methods for batteries. Renew. Sustain. Energy Rev. 150, 111514 ( 2021). https://doi.org/10.1016/j.rser.2021.111514
|
51. |
P. Lu, N. Lalam, M. Badar, B. Liu, B.T. Chorpening et al., Distributed optical fiber sensing: review and perspective. Appl. Phys. Rev. 6, 041302 ( 2019). https://doi.org/10.1063/1.5113955
|
52. |
|
53. |
A. Nedjalkov, J. Meyer, A. Gräfenstein, B. Schramm, M. Angelmahr et al., Refractive index measurement of lithium ion battery electrolyte with etched surface cladding waveguide Bragg gratings and cell electrode state monitoring by optical strain sensors. Batteries 5, 30 ( 2019). https://doi.org/10.3390/batteries5010030
|
54. |
P. Desai, J. Huang, H. Hijazi, L. Zhang, S. Mariyappan et al., Deciphering interfacial reactions via optical sensing to tune the interphase chemistry for optimized Na-ion electrolyte formulation. Adv. Energy Mater. 11, 2101490 ( 2021). https://doi.org/10.1002/aenm.202101490
|
55. |
J. Fleming, T. Amietszajew, E. McTurk, D.P. Towers, D. Greenwood et al., Development and evaluation of in situ instrumentation for cylindrical Li-ion cells using fibre optic sensors. HardwareX 3, 100-109 ( 2018). https://doi.org/10.1016/j.ohx.2018.04.001
|
56. |
|
57. |
A. Ganguli, B. Saha, A. Raghavan, P. Kiesel, K. Arakaki et al., Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: internal cell signals and utility for state estimation. J. Power. Sources 341, 474-482 ( 2017). https://doi.org/10.1016/j.jpowsour.2016.11.103
|
58. |
A.M. Cao Paz, J.M. Acevedo, C. Quintans-Grana, S. Fernandez-Gomez, Lifetime estimation for plastic optical fibers in harsh acid environments. IEEE Trans. Device Mater. Reliab. 12, 4-9 ( 2012). https://doi.org/10.1109/TDMR.2011.2170215
|
59. |
J. Peng, S. Jia, S. Yang, X. Kang, H. Yu et al., State estimation of lithium-ion batteries based on strain parameter monitored by fiber Bragg grating sensors. J. Energy Storage 52, 104950 ( 2022). https://doi.org/10.1016/j.est.2022.104950
|
60. |
J. Peng, S. Jia, H. Yu, X. Kang, S. Yang et al., Design and experiment of FBG sensors for temperature monitoring on external electrode of lithium-ion batteries. IEEE Sens. J. 21, 4628-4634 ( 2021). https://doi.org/10.1109/JSEN.2020.3034257
|
61. |
|
62. |
W. Mei, Z. Liu, C. Wang, C. Wu, Y. Liu et al., Operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies. Nat. Commun. 14, 5251 ( 2023). https://doi.org/10.1038/s41467-023-40995-3
|
63. |
|
64. |
Q. Jiang, D. Hu, M. Yang, Simultaneous measurement of liquid level and surrounding refractive index using tilted fiber Bragg grating. Sens. Actuat. A Phys. 170, 62-65 ( 2011). https://doi.org/10.1016/j.sna.2011.06.001
|
65. |
T. Osuch, T. Jurek, K. Markowski, K. Jedrzejewski, Simultaneous measurement of liquid level and temperature using tilted fiber Bragg grating. IEEE Sens. J. 16, 1205-1209 ( 2016). https://doi.org/10.1109/JSEN.2015.2501381
|
66. |
F. Liu, W. Lu, J. Huang, V. Pimenta, S. Boles et al., Detangling electrolyte chemical dynamics in lithium sulfur batteries by operando monitoring with optical resonance combs. Nat. Commun. 14, 7350 ( 2023). https://doi.org/10.1038/s41467-023-43110-8
|
67. |
|
68. |
A. Ghannoum, R.C. Norris, K. Iyer, L. Zdravkova, A. Yu et al., Optical characterization of commercial lithiated graphite battery electrodes and in situ fiber optic evanescent wave spectroscopy. ACS Appl. Mater. Interfaces 8, 18763-18769 ( 2016). https://doi.org/10.1021/acsami.6b03638
|
69. |
A. Ghannoum, K. Iyer, P. Nieva, A. Khajepour, Fiber optic monitoring of lithium-ion batteries a novel tool to understand the lithiation of batteries. 15th IEEE Sensors Conference. 16597286 (2016). https://ieeexplore.ieee.org/document/7808695
URL
|
70. |
A. Ghannoum, P. Nieva, A. Yu, A. Khajepour, Development of embedded fiber-optic evanescent wave sensors for optical characterization of graphite anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 41284-41290 ( 2017). https://doi.org/10.1021/acsami.7b13464
|
71. |
J. Hedman, R. Mogensen, R. Younesi, F. Björefors, Fiber optic sensors for detection of sodium plating in sodium-ion batteries. ACS Appl. Energy Mater. 5, 6219-6227 ( 2022). https://doi.org/10.1021/acsaem.2c00595
|
72. |
|
73. |
R. Wang, H. Zhang, Q. Liu, F. Liu, X. Han et al., Operando monitoring of ion activities in aqueous batteries with plasmonic fiber-optic sensors. Nat. Commun. 13, 547 ( 2022). https://doi.org/10.1038/s41467-022-28267-y
|
74. |
X. Liu, L. Yin, D. Ren, L. Wang, Y. Ren et al., In situ observation of thermal-driven degradation and safety concerns of lithiated graphite anode. Nat. Commun. 12, 4235 ( 2021). https://doi.org/10.1038/s41467-021-24404-1
|
75. |
X. Wang, D. Ren, H. Liang, Y. Song, H. Huo et al., Ni crossover catalysis: truth of hydrogen evolution in Ni-rich cathode-based lithium-ion batteries. Energy Environ. Sci. 16, 1200-1209 ( 2023). https://doi.org/10.1039/D2EE04109J
|
76. |
A.M. Cao-Paz, J. Marcos-Acevedo, A. del Río-Vázquez, C. Martínez-Peñalver, A. Lago-Ferreiro et al., A multi-point sensor based on optical fiber for the measurement of electrolyte density in lead-acid batteries. Sensors 10, 2587-2608 ( 2010). https://doi.org/10.3390/s100402587
|
77. |
|
78. |
J. Thapa, B. Liu, S.D. Woodruff, B.T. Chorpening, M.P. Buric, Raman scattering in single-crystal sapphire at elevated temperatures. Appl. Opt. 56, 8598-8606 ( 2017). https://doi.org/10.1364/AO.56.008598
|
79. |
G.H. Watson Jr., W.B. Daniels, C.S. Wang, Measurements of Raman intensities and pressure dependence of phonon frequencies in sapphire. J. Appl. Phys. 52, 956-958 ( 1981). https://doi.org/10.1063/1.328785
|
80. |
H.H. Kee, G.P. Lees, T.P. Newson, All-fiber system for simultaneous interrogation of distributed strain and temperature sensing by spontaneous brillouin scattering. Optics Lett. 25(10), 695-697 ( 2000). https://doi.org/10.1364/OL.25.000695
|
81. |
|
82. |
H.L. Atchison, Z.R. Bailey, D.A. Wetz, M. Davis, J.M. Heinzel, Fiber optic based thermal and strain sensing of lithium-ion batteries at the individual cell level. J. Electrochem. Soc. 168, 040535 ( 2021). https://doi.org/10.1149/1945-7111/abf7e4
|
83. |
Z. Wei, J. Hu, H. He, Y. Yu, J. Marco, Embedded distributed temperature sensing enabled multistate joint observation of smart lithium-ion battery. IEEE Trans. Ind. Electron. 70, 555-565 ( 2023). https://doi.org/10.1109/TIE.2022.3146503
|
84. |
|
85. |
Y. Yu, E. Vergori, F. Maddar, Y. Guo, D. Greenwood et al., Real-time monitoring of internal structural deformation and thermal events in lithium-ion cell via embedded distributed optical fibre. J. Power. Sources 521, 230957 ( 2022). https://doi.org/10.1016/j.jpowsour.2021.230957
|
86. |
C.-J. Bae, A. Manandhar, P. Kiesel, A. Raghavan, Monitoring the strain evolution of Lithium-Ion battery electrodes using an optical fiber Bragg grating sensor. Energy Technol. 4, 851-855 ( 2016). https://doi.org/10.1002/ente.201500514
|
87. |
X. Wang, Y. Sone, G. Segami, H. Naito, C. Yamada et al., Understanding volume change in lithium-ion cells during charging and discharging using in situ measurements. J. Electrochem. Soc. 154, A14 ( 2007). https://doi.org/10.1149/1.2386933
|
88. |
D. Clerici, F. Mocera, A. Somà, Electrochemical-mechanical multi-scale model and validation with thickness change measurements in prismatic lithium-ion batteries. J. Power. Sources 542, 231735 ( 2022). https://doi.org/10.1016/j.jpowsour.2022.231735
|
89. |
M. Nascimento, C. Marques, J. Pinto, Tracking Li-ion batteries using fiber optic sensors. Smart Mobility-Recent Advances, New Perspectives and Applications, 1-28 ( 2022). https://doi.org/10.5772/intechopen.105548
|
90. |
J. Meyer, A. Nedjalkov, A. Doering, M. Angelmahr, W. Schade, Fiber optical sensors for enhanced battery safety. SPIE Sensing Technology + Applications. in Proceedings of SPIE 9480, Fiber Optic Sensors and Applications XII Baltimore, MD, USA 9480, 190-201 ( 2015). https://doi.org/10.1117/12.2183325
|
91. |
M. Nascimento, M.S. Ferreira, J.L. Pinto, Impact of different environmental conditions on lithium-ion batteries performance through the thermal monitoring with fiber sensors. in Proc SPIE 10453, Third International Conference on Applications of Optics and Photonics 10453, 673-677 ( 2017). https://doi.org/10.1117/12.2276331
|
92. |
K.M. Alcock, M. Grammel, Á. González-Vila, L. Binetti, K. Goh et al., An accessible method of embedding fibre optic sensors on lithium-ion battery surface for in situ thermal monitoring. Sens. Actuat. A Phys. 332, 113061 ( 2021). https://doi.org/10.1016/j.sna.2021.113061
|
93. |
L.W. Sommer, P. Kiesel, A. Ganguli, A. Lochbaum, B. Saha et al., Fast and slow ion diffusion processes in lithium ion pouch cells during cycling observed with fiber optic strain sensors. J. Power. Sources 296, 46-52 ( 2015). https://doi.org/10.1016/j.jpowsour.2015.07.025
|
94. |
L.W. Sommer, A. Raghavan, P. Kiesel, B. Saha, J. Schwartz et al., Monitoring of intercalation stages in lithium-ion cells over charge-discharge cycles with fiber optic sensors. J. Electrochem. Soc. 162, A2664-A2669 ( 2015). https://doi.org/10.1149/2.0361514jes
|
95. |
S. Kim, J. Wee, K. Peters, H.-Y.S. Huang, Multiphysics coupling in lithium-ion batteries with reconstructed porous microstructures. J. Phys. Chem. C 122(10), 5280-5290 ( 2018). https://doi.org/10.1021/acs.jpcc.7b12388
|
96. |
B. Rente, M. Fabian, M. Vidakovic, X. Liu, X. Li et al., Lithium-ion battery state-of-charge estimator based on FBG-based strain sensor and employing machine learning. IEEE Sens. J. 21, 1453-1460 ( 2021). https://doi.org/10.1109/JSEN.2020.3016080
|
97. |
|
98. |
T. Amietszajew, E. McTurk, J. Fleming, R. Bhagat, Understanding the limits of rapid charging using instrumented commercial 18650 high-energy Li-ion cells. Electrochim. Acta 263, 346-352 ( 2018). https://doi.org/10.1016/j.electacta.2018.01.076
|
99. |
L. Albero Blanquer, F. Marchini, J.R. Seitz, N. Daher, F. Bétermier et al., Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes. Nat. Commun. 13, 1153 ( 2022). https://doi.org/10.1038/s41467-022-28792-w
|
100. |
C.E. Hendricks, A.N. Mansour, D.A. Fuentevilla, G.H. Waller, J.K. Ko et al., Copper dissolution in overdischarged lithium-ion cells: X-ray photoelectron spectroscopy and X-ray absorption fine structure analysis. J. Electrochem. Soc. 167, 090501 ( 2020). https://doi.org/10.1149/1945-7111/ab697a
|
101. |
Z. Wei, J. Zhao, H. He, G. Ding, H. Cui et al., Future smart battery and management: advanced sensing from external to embedded multi-dimensional measurement. J. Power. Sources 489, 229462 ( 2021). https://doi.org/10.1016/j.jpowsour.2021.229462
|
102. |
|
103. |
|
104. |
|
105. |
|
106. |
|
107. |
M. Ouyang, D. Ren, L. Lu, J. Li, X. Feng et al., Overcharge-induced capacity fading analysis for large format lithium-ion batteries with Li Ni 1/3Co 1/3Mn 1/3O 2+ Li Mn 2O 4 composite cathode. J. Power. Sources 279, 626-635 ( 2015). https://doi.org/10.1016/j.jpowsour.2015.01.051
|
108. |
G. Antonio, J. Monsalve-Serrano, R. Sari, S.D. Boggio, An optical investigation of thermal runway phenomenon under thermal abuse conditions. Energy Convers. Manag. 246, 114663 ( 2021). https://doi.org/10.1016/j.enconman.2021.114663
|
109. |
|
110. |
M. Dotoli, R. Rocca, M. Giuliano, G. Nicol, F. Parussa et al., A review of mechanical and chemical sensors for automotive Li-ion battery systems. Sensors 22, 1763 ( 2022). https://doi.org/10.3390/s22051763
|
111. |
X. Feng, M. Fang, X. He, M. Ouyang, L. Lu et al., Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J. Power. Sources 255, 294-301 ( 2014). https://doi.org/10.1016/j.jpowsour.2014.01.005
|
112. |
|
113. |
|
114. |
|
115. |
A. Raghavan, P. Kiesel, A. Lochbaum, B. Saha, L.W. Sommer, T. Staudt, Battery management based on internal optical sensing. US Patent, 9553465 B2 (2014). https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/9553465
URL
|
116. |
H. Atchison, Z. Bailey, D. Wetz, M. Davis, J. Heinzel, Thermal monitoring of series and parallel connected lithium-ion battery modules using fiber optic sensors. ECS Sens. Plus 1, 025401 ( 2022). https://doi.org/10.1149/2754-2726/ac7abd
|
117. |
A. Wang, L. Wang, Y. Wu, Y. He, D. Ren et al., Uncovering the effect of solid electrolyte interphase on ion desolvation for rational interface design in Li-ion batteries. Adv. Energy Mater. 13, 2300626 ( 2023). https://doi.org/10.1002/aenm.202300626
|
118. |
A. Wang, L. Wang, H. Liang, Y. Song, Y. He et al., Lithium difluorophosphate as a widely applicable additive to boost lithium-ion batteries: a perspective. Adv. Funct. Mater. 33, 2370044 ( 2023). https://doi.org/10.1002/adfm.202370044
|
119. |
Y. Song, L. Wang, H. Cui, H. Liang, Q. Hu et al., Boosting battery safety by mitigating thermal-induced crosstalk with a Bi-continuous separator. Adv. Energy Mater. 12, 2201964 ( 2022). https://doi.org/10.1002/aenm.202201964
|
120. |
Y. Song, X. Liu, D. Ren, H. Liang, L. Wang et al., Simultaneously blocking chemical crosstalk and internal short circuit via gel-stretching derived nanoporous non-shrinkage separator for safe lithium-ion batteries. Adv. Mater. 34, e2106335 ( 2022). https://doi.org/10.1002/adma.202106335
|
121. |
Z. Zhang, Y. Song, B. Zhang, L. Wang, X. He, Metallized plastic foils: a promising solution for high-energy lithium-ion battery current collectors. Adv. Energy Mater. 13, 2302134 ( 2023). https://doi.org/10.1002/aenm.202302134
|
122. |
Q. Liu, L. Wang, X. He, Toward practical solid-state polymer lithium batteries by in situ polymerization process: a review. Adv. Energy Mater. 13, 2300798 ( 2023). https://doi.org/10.1002/aenm.202300798
|
123. |
|
124. |
X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia et al., Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 10, 246-267 ( 2018). https://doi.org/10.1016/j.ensm.2017.05.013
|
125. |
J. Glenneberg, G. Kasiri, I. Bardenhagen, F. La Mantia, M. Busse et al., Investigations on morphological and electrochemical changes of all-solid-state thin film battery cells under dynamic mechanical stress conditions. Nano Energy 57, 549-557 ( 2019). https://doi.org/10.1016/j.nanoen.2018.12.070
|
126. |
|
127. |
|
128. |
|
129. |
|
130. |
|
131. |
|
132. |
S. Qian, X. Chen, S. Jiang, Q. Sun, X. Chen et al., Plasmonic fiber-optic sensing system for in situ monitoring the capacitance and temperature of supercapacitors. Opt. Express 30, 27322-27332 ( 2022). https://doi.org/10.1364/OE.462189
|
133. |
P. Listewnik, M. Bechelany, M. Szczerska, Microsphere structure application for supercapacitor in situ temperature monitoring. Smart Mater. Struct. 30, 10LT01 ( 2021). https://doi.org/10.1088/1361-665x/ac221b
|
134. |
|
135. |
V.A. Sethuraman, M.J. Chon, M. Shimshak, V. Srinivasan, P.R. Guduru, In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation. J. Power. Sources 195, 5062-5066 ( 2010). https://doi.org/10.1016/j.jpowsour.2010.02.013
|
136. |
A.F. Bower, P.R. Guduru, V.A. Sethuraman, A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell. J. Mech. Phys. Solids 59, 804-828 ( 2011). https://doi.org/10.1016/j.jmps.2011.01.003
|
137. |
V.A. Sethuraman, V. Srinivasan, A.F. Bower, P.R. Guduru, In situ measurements of stress-potential coupling in lithiated silicon. J. Electrochem. Soc. 157, A1253 ( 2010). https://doi.org/10.1149/1.3489378
|
138. |
S. Fujimoto, S. Uemura, N. Imanishi, S. Hirai, Oxygen concentration measurement in the porous cathode of a lithium-air battery using a fine optical fiber sensor. Mech. Eng. Lett. 5, 19-00095 ( 2019). https://doi.org/10.1299/mel.19-00095
|
139. |
A. Fortier, M. Tsao, N. Williard, Y. Xing, M. Pecht, Preliminary study on integration of fiber optic Bragg grating sensors in Li-ion batteries and in situ strain and temperature monitoring of battery cells. Energies 10, 838 ( 2017). https://doi.org/10.3390/en10070838
|
140. |
Y. Wu, X. Long, J. Lu, R. Zhou, L. Liu et al., Long-life in situ temperature field monitoring using Fiber Bragg grating sensors in electromagnetic launch high-rate hardcase lithium-ion battery. J. Energy Storage 57, 106207 ( 2023). https://doi.org/10.1016/j.est.2022.106207
|
141. |
B. Witzigmann, Y. Arakawa, M. Osiński, K. Markiewicz, P. Mergo et al., A fiber optic temperature sensor based on multi-core microstructured fiber with coupled cores for high temperature environment. Physics and Simulation of Optoelectronic Devices XXVI. 105260X ( 2018). https://doi.org/10.1117/12.2290780
|
142. |
B. Witzigmann, M. Osiński, Y. Arakawa, A. Ziolowicz, A. Kołakowska et al., Strain sensor based on sectional crosstalk change in dual-core fibers. Physics and Simulation of Optoelectronic Devices XXV. 100981N ( 2017). https://doi.org/10.1117/12.2252773
|
143. |
|
144. |
K. Naeem, B.H. Kim, B. Kim, Y. Chung, High-sensitivity temperature sensor based on a selectively-polymer-filled two-core photonic crystal fiber in-line interferometer. IEEE Sens. J. 15, 3998-4003 ( 2015). https://doi.org/10.1109/JSEN.2015.2405911
|
145. |
O. Frazao, C. Jesus, J.M. Baptista, J.L. Santos, P. Roy, Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber. IEEE Photonics Technol. Lett. 21, 1277-1279 ( 2009). https://doi.org/10.1109/LPT.2009.2025870
|
146. |
H.P. Gong, C.C. Chan, P. Zu, L.H. Chen, X.Y. Dong, Curvature measurement by using low-birefringence photonic crystal fiber based Sagnac loop. Opt. Commun. 283, 3142-3144 ( 2010). https://doi.org/10.1016/j.optcom.2010.04.023
|
147. |
H.V. Thakur, S.M. Nalawade, S. Gupta, R. Kitture, S.N. Kale, Photonic crystal fiber injected with Fe 3O 4 nanofluid for magnetic field detection. Appl. Phys. Lett. 99, 161101 ( 2011). https://doi.org/10.1063/1.3651490
|
148. |
K. Mileńko, D.J. Hu, P.P. Shum, T. Zhang, J.L. Lim et al., Photonic crystal fiber tip interferometer for refractive index sensing. Opt. Lett. 37, 1373-1375 ( 2012). https://doi.org/10.1364/OL.37.001373
|
149. |
J.N. Dash, R. Jha, Inline microcavity-based PCF interferometer for refractive index and temperature sensing. IEEE Photonics Technol. Lett. 27, 1325-1328 ( 2015). https://doi.org/10.1109/LPT.2015.2421308
|
150. |
M.F.O. Hameed, M.Y. Azab, A.M. Heikal, S.M. El-Hefnawy, S.S.A. Obayya, Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal. IEEE Photonics Technol. Lett. 28, 59-62 ( 2016). https://doi.org/10.1109/LPT.2015.2480339
|
151. |
C. Du, Q. Wang, Y. Zhao, J. Li, Highly sensitive temperature sensor based on an isopropanol-filled photonic crystal fiber long period grating. Opt. Fiber Technol. 34, 12-15 ( 2017). https://doi.org/10.1016/j.yofte.2016.11.013
|
152. |
W.J. Bock, J. Chen, P. Mikulic, T. Eftimov, M. Korwin-Pawlowski, Pressure sensing using periodically tapered long-period gratings written in photonic crystal fibres. Meas. Sci. Technol. 18, 3098-3102 ( 2007). https://doi.org/10.1088/0957-0233/18/10/s08
|
153. |
|
154. |
S. Sulejmani, C. Sonnenfeld, T. Geernaert, P. Mergo, M. Makara et al., Control over the pressure sensitivity of Bragg grating-based sensors in highly birefringent microstructured optical fibers. IEEE Photonics Technol. Lett. 24, 527-529 ( 2012). https://doi.org/10.1109/LPT.2012.2183120
|
155. |
|
156. |
W. Lin, H. Zhang, B. Song, B. Liu, Y. Lin et al., Magnetic field sensor based on fiber taper coupler coated with magnetic fluid. Proc. SPIE 9634, 1056-1059 ( 2015). https://doi.org/10.1117/12.2191929
|
157. |
H. Liu, Y. Wang, C. Tan, C. Zhu, Y. Gao et al., Simultaneous measurement of temperature and magnetic field based on cascaded photonic crystal fibers with surface plasmon resonance. Optik 134, 257-263 ( 2017). https://doi.org/10.1016/j.ijleo.2017.01.022
|
158. |
A.A. Rifat, G.A. Mahdiraji, Y.M. Sua, R. Ahmed, Y.G. Shee et al., Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor. Opt. Express 24, 2485-2495 ( 2016). https://doi.org/10.1364/OE.24.002485
|
159. |
H.-J. Kim, O.-J. Kown, S.B. Lee, Y.-G. Han, Measurement of temperature and refractive index based onsurface long-period gratings deposited onto a D-shaped photonic crystal fiber. Appl. Phys. B 102, 81-85 ( 2011). https://doi.org/10.1007/s00340-010-4146-z
|
160. |
|
161. |
|
162. |
S.S. Patil, V.P. Labade, N.M. Kulkarni, A.D. Shaligram, Refractometric fiber optic sensor for in situ monitoring the state-of-charge of a lead acid battery. J. Opt. Technol. 81, 159-163 ( 2014). https://doi.org/10.1364/JOT.81.000159
|
163. |
N.A. David, P.M. Wild, J. Jensen, T. Navessin, N. Djilali, Simultaneous in situ measurement of temperature and relative humidity in a PEMFC using optical fiber sensors. J. Electrochem. Soc. 157, B1173 ( 2010). https://doi.org/10.1149/1.3436652
|
164. |
E. Miele, W.M. Dose, I. Manyakin, M.H. Frosz, Z. Ruff et al., Hollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes. Nat. Commun. 13, 1651 ( 2022). https://doi.org/10.1038/s41467-022-29330-4
|
165. |
F. Rittweger, C. Modrzynski, P. Schiepel, K.-R. Riemschneider, Self-compensation of cross influences using spectral transmission ratios for optical fiber sensors in lithium-ion batteries. In 2021 IEEE Sensors Applications Symposium (SAS). Sundsvall, Sweden. IEEE, 1-6 ( 2021). https://doi.org/10.1109/SAS51076.2021.9530176
|
166. |
|
167. |
M.F. Sgroi, M. Dotoli, M. Giuliano, G. Nicol, F. Parussa et al., Smart batteries: requirements of the automotive world. In 2021 IEEE International Workshop on Metrology for Automotive (MetroAutomotive). Bologna, Italy. IEEE, (2021), 42-47.
|
168. |
H. Zhang, D. Ren, H. Ming, W. Zhang, G. Cao et al., Digital twin enables rational design of ultrahigh-power lithium-ion batteries. Adv. Energy Mater. 13(1), 2202660 ( 2022). https://doi.org/10.1002/aenm.202202660
|
169. |
T. Vegge, J.-M. Tarascon, K. Edström, Toward better and smarter batteries by combining AI with multisensory and self-healing approaches. Adv. Energy Mater. 11, 2100362 ( 2021). https://doi.org/10.1002/aenm.202100362
|
170. |
Y. Inoue, P. Kuad, Y. Okumura, Y. Takashima, H. Yamaguchi et al., Thermal and photochemical switching of conformation of poly(ethylene glycol)-substituted cyclodextrin with an azobenzene group at the chain end. J. Am. Chem. Soc. 129, 6396-6397 ( 2007). https://doi.org/10.1021/ja071717q
|
171. |
M. Fichtner, K. Edström, E. Ayerbe, M. Berecibar, A. Bhowmik et al., Rechargeable batteries of the future: the state of the art from a BATTERY 2030+ perspective. Adv. Energy Mater. 12, 2102904 ( 2022). https://doi.org/10.1002/aenm.202102904
|
172. |
J. Amici, P. Asinari, E. Ayerbe, P. Barboux, P. Bayle-Guillemaud et al., A roadmap for transforming research to invent the batteries of the future designed within the European large scale research initiative BATTERY 2030+. Adv. Energy Mater. 12, 2102785 ( 2022). https://doi.org/10.1002/aenm.202102785
|
173. |
R. Narayan, C. Laberty-Robert, J. Pelta, J.-M. Tarascon, R. Dominko, Self-healing: an emerging technology for next-generation smart batteries. Adv. Energy Mater. 12, 2102652 ( 2022). https://doi.org/10.1002/aenm.202102652
|
174. |
A. Benayad, D. Diddens, A. Heuer, A.N. Krishnamoorthy, M. Maiti et al., High-throughput experimentation and computational freeway lanes for accelerated battery electrolyte and interface development research. Adv. Energy Mater. 12, 2102678 ( 2022). https://doi.org/10.1002/aenm.202102678
|
175. |
D. Atkins, E. Ayerbe, A. Benayad, F.G. Capone, E. Capria et al., Understanding battery interfaces by combined characterization and simulation approaches: challenges and perspectives. Adv. Energy Mater. 12, 2102687 ( 2022). https://doi.org/10.1002/aenm.202102687
|
176. |
|
177. |
E. Ayerbe, M. Berecibar, S. Clark, A.A. Franco, J. Ruhland, Digitalization of battery manufacturing: current status, challenges, and opportunities. Adv. Energy Mater. 12, 2102696 ( 2022). https://doi.org/10.1002/aenm.202102696
|
178. |
A. Bhowmik, M. Berecibar, M. Casas-Cabanas, G. Csanyi, R. Dominko et al., Implications of the BATTERY 2030+ AI-assisted toolkit on future low-TRL battery discoveries and chemistries. Adv. Energy Mater. 12, 2102698 ( 2022). https://doi.org/10.1002/aenm.202102698
|
179. |
Ministry of Industry and Information Technology of China, Key Special Projects for Energy Storage and Smart Grid. (2021). https://www.miit.gov.cn/zwgk/jytafwgk/art/2021/art_1e9ad802670d4517affdd7ea85495e57.html
URL
|