|
|
Amphipathic Phenylalanine-Induced Nucleophilic-Hydrophobic Interface Toward Highly Reversible Zn Anode |
Anbin Zhou1, Huirong Wang1, Fengling Zhang1, Xin Hu1( ), Zhihang Song1, Yi Chen1, Yongxin Huang1,2( ), Yanhua Cui4, Yixiu Cui4, Li Li1,2,3, Feng Wu1,2,3, Renjie Chen1,2,3( ) |
1 Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China 2 Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, People’s Republic of China 3 Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, People’s Republic of China 4 Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang, 621900, People’s Republic of China |
|
|
Abstract Aqueous Zn2+-ion batteries (AZIBs), recognized for their high security, reliability, and cost efficiency, have garnered considerable attention. However, the prevalent issues of dendrite growth and parasitic reactions at the Zn electrode interface significantly impede their practical application. In this study, we introduced a ubiquitous biomolecule of phenylalanine (Phe) into the electrolyte as a multifunctional additive to improve the reversibility of the Zn anode. Leveraging its exceptional nucleophilic characteristics, Phe molecules tend to coordinate with Zn2+ ions for optimizing the solvation environment. Simultaneously, the distinctive lipophilicity of aromatic amino acids empowers Phe with a higher adsorption energy, enabling the construction of a multifunctional protective interphase. The hydrophobic benzene ring ligands act as cleaners for repelling H2O molecules, while the hydrophilic hydroxyl and carboxyl groups attract Zn2+ ions for homogenizing Zn2+ flux. Moreover, the preferential reduction of Phe molecules prior to H2O facilitates the in situ formation of an organic-inorganic hybrid solid electrolyte interphase, enhancing the interfacial stability of the Zn anode. Consequently, Zn||Zn cells display improved reversibility, achieving an extended cycle life of 5250 h. Additionally, Zn||LMO full cells exhibit enhanced cyclability of retaining 77.3% capacity after 300 cycles, demonstrating substantial potential in advancing the commercialization of AZIBs.
|
Received: 31 December 2023
Published: 28 March 2024
|
Corresponding Authors:
Xin Hu, Yongxin Huang, Renjie Chen
|
About author:: Anbin Zhou and Huirong Wang have contributed equally to this work. |
|
|
|
|
Fig. 1 Characterization of electrolyte system. a Schematic illustration for various derivatives of amino acids. b LSV curves and c corrosion current density and potential derived from Tafel plots in 20 mmol L−1 Phe/Asp/Ser/Cys additives electrolytes. d Electrostatic potential mapping of Phe molecule. e Images of ZSO/Phe system obtained from molecular dynamics simulations. f Radial distribution functions for Zn2+-O (H2O) and Zn2+-O (Phe) in ZSO/Phe electrolyte. g 2H NMR spectra of H2O from pure D2O, ZSO, and ZSO/Phe system. h Raman spectra and i FTIR spectra for ZSO and ZSO/Phe system with various concentrations
|
|
Fig. 2 Characterization of SEI chemistry. a XPS depth profile of C 1s, N 1s, O 1s and S 2p for Zn anode cycled in ZSO/Phe electrolyte for 5 cycles at a current density of 1 mA cm−1. b HOMO − LUMO energy levels of Phe and water molecules. c 3D visualization of TOF-SIMS for CH−, CN−, SO3−, and ZnS− in ZSO/Phe electrolyte. d HAADF image. e-g HRTEM image of the electrode interface and corresponding elemental mapping
|
|
Fig. 3 Characterization of interfacial interaction. a In situ Raman spectrum for Zn anode tested in ZSO and ZSO/Phe electrolytes in Zn2+ plating process. b XRD patterns of cycled Zn anodes. c In situ DEMS measurement of H2 evolution rate within Zn||Cu cells. d LSV curves and e Tafel plots of Zn electrodes measured in ZSO and ZSO/Phe electrolytes. f CA curves at an overpotential of − 150 mV within Zn||Zn cells (inset: schematic diagrams of 2D and 3D diffusion process of Zn2+). In situ optical microscopic images of Zn plating process in g ZSO and h ZSO/Phe electrolytes
|
|
Fig. 4 Reversible Zn plating/stripping stability characterization. a, b Long-term galvanostatic cycling of Zn||Zn cells at current density of 2, 5, 10, 20, 30, and 50 mA cm−2, respectively. c Comparison of cumulative plated capacity with previously reported. d Rate performances of Zn||Zn cells in different electrolytes. e Galvanostatic cycling of Zn||Zn cells in diluted electrolyte. f CV curves for Zn nucleation of Zn-Ti cells in different electrolytes. g CE of the Zn plating/stripping in Zn||Cu cells. h In situ XRD measurements on Zn||Zn cells during charging/discharging process. i, j AFM images of the cycled Zn in different electrolytes
|
|
Fig. 5 Zn||LMO full cell performance. a Long-term cycling performance at a current density of 1 C. The corresponding voltage-capacity profile in b ZSO/Phe and c ZSO electrolytes. SEM images of cycled Zn anode in ZSO/Phe d ZSO e electrolytes. f Rate performance at rates of 1, 2, 3, and 5 C. g, h Digital photo of open-circuit voltage for the pouch Zn||LMO cell and a model airplane in action powered by Zn||LMO cell
|
1. | S.A. Hashemi, S. Ramakrishna, A.G. Aberle, Recent progress in flexible-wearable solar cells for self-powered electronic devices. Energy Environ. Sci. 13, 685-743 (2020). | 2. | S. Lei, Z. Liu, C. Liu, J. Li, B. Lu et al., Opportunities for biocompatible and safe zinc-based batteries. Energy Environ. Sci. 15, 4911-4927 (2022). | 3. | Y. Yang, W. Gao, Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48, 1465-1491 (2019). | 4. | C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin et al., Advanced carbon for flexible and wearable electronics. Adv. Mater. 31, e1801072 (2019). | 5. | X. Xiao, X. Xiao, Y. Zhou, X. Zhao, G. Chen et al., An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles. Sci. Adv. 7, eabl3742 (2021). | 6. | X. Jia, C. Liu, Z.G. Neale, J. Yang, G. Cao, Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120, 7795-7866 (2020). | 7. | C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. Engl. 51, 933-935 (2012). | 8. | L. Zhang, L. Chen, X. Zhou, Z. Liu, Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5, 1400930 (2015). | 9. | N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long et al., Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8, 405 (2017). | 10. | M. Li, C. Wang, Z. Chen, K. Xu, J. Lu, New concepts in electrolytes. Chem. Rev. 120, 6783-6819 (2020). | 11. | S. Wang, G. Liu, L. Wang, Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chem. Rev. 119, 5192-5247 (2019). | 12. | X.-W. Yu, Z. Li, X. Wu, H. Zhang, Q. Zhao et al., Ten concerns of Zn metal anode for rechargeable aqueous zinc batteries. Joule 6, 1145-1175 (2023). | 13. | Y.-X. Huang, F. Wu, R.-J. Chen, Thermodynamic analysis and kinetic optimization of high-energy batteries based on multi-electron reactions. Natl. Sci. Rev. 7, 1367-1386 (2020). | 14. | F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu et al., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9, 1656 (2018). | 15. | S.-J. Zhang, J. Hao, D. Luo, P.-F. Zhang, B. Zhang et al., Dual-function electrolyte additive for highly reversible Zn anode. Adv. Energy Mater. 11, 2102010 (2021). | 16. | J. Chen, X. Qiao, X. Han, J. Zhang, H. Wu et al., Releasing plating induced stress for highly reversible aqueous Zn metal anodes. Nano Energy 103, 107814 (2022). | 17. | W. Wang, G. Huang, Y. Wang, Z. Cao, L. Cavallo et al., Organic acid etching strategy for dendrite suppression in aqueous zinc-ion batteries. Adv. Energy Mater. 12, 2102797 (2022). | 18. | C. Xie, H. Ji, Q. Zhang, Z. Yang, C. Hu et al., High-index zinc facet exposure induced by preferentially orientated substrate for dendrite-free zinc anode. Adv. Energy Mater. 13, 2203203 (2023). | 19. | R. Zhao, X. Dong, P. Liang, H. Li, T. Zhang et al., Prioritizing hetero-metallic interfaces via thermodynamics inertia and kinetics zincophilia metrics for tough Zn-based aqueous batteries. Adv. Mater. 35, e2209288 (2023). | 20. | S. Chen, J. Chen, X. Liao, Y. Li, W. Wang et al., Enabling low-temperature and high-rate Zn metal batteries by activating Zn nucleation with single-atomic sites. ACS Energy Lett. 7, 4028-4035 (2022). | 21. | J. Han, H. Euchner, M. Kuenzel, S.M. Hosseini, A. Groß et al., A thin and uniform fluoride-based artificial interphase for the zinc metal anode enabling reversible Zn/MnO2 batteries. ACS Energy Lett. 6, 3063-3071 (2021). | 22. | X. He, Y. Cui, Y. Qian, Y. Wu, H. Ling et al., Anion concentration gradient-assisted construction of a solid-electrolyte interphase for a stable zinc metal anode at high rates. J. Am. Chem. Soc. 144, 11168-11177 (2022). | 23. | L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang et al., Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16, 902-910 (2021). | 24. | L. Ma, J. Vatamanu, N.T. Hahn, T.P. Pollard, O. Borodin et al., Highly reversible Zn metal anode enabled by sustainable hydroxyl chemistry. Proc. Natl. Acad. Sci. U.S.A. 119, e2121138119 (2022). | 25. | P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60, 18247-18255 (2021). | 26. | W. Yang, X. Du, J. Zhao, Z. Chen, J. Li et al., Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 4, 1557-1574 (2020). | 27. | H. Wang, A. Zhou, X. Hu, Z. Hu, F. Zhang et al., Bifunctional dynamic adaptive interphase reconfiguration for zinc deposition modulation and side reaction suppression in aqueous zinc ion batteries. ACS Nano 17, 11946-11956 (2023). | 28. | A. Zhou, H. Wang, X. Hu, F. Zhang, Y. Zhao et al., Molecular recognition effect enabled by novel crown ether as macrocyclic host towards highly reversible Zn anode. Sci. Bull. 68, 2170-2179 (2023). | 29. | Z. Huang, Z. Li, Y. Wang, J. Cong, X. Wu et al., Regulating Zn(002) deposition toward long cycle life for Zn metal batteries. ACS Energy Lett. 8, 372-380 (2023). | 30. | T.C. Li, Y. Lim, X.L. Li, S. Luo, C. Lin et al., A universal additive strategy to reshape electrolyte solvation structure toward reversible Zn storage. Adv. Energy Mater. 12, 2103231 (2022). | 31. | L. Zhou, F. Wang, F. Yang, X. Liu, Y. Yu et al., Unshared pair electrons of zincophilic lewis base enable long-life Zn anodes under “three high” conditions. Angew. Chem. Int. Ed. Engl. 61, e202208051 (2022). | 32. | X. Shi, J. Wang, F. Yang, X. Liu, Y. Yu et al., Metallic zinc anode working at 50 and 50mAhcm-2 with high depth of discharge via electrical double layer reconstruction. Adv. Funct. Mater. 33, 2211917 (2023). | 33. | H. Lu, X. Zhang, M. Luo, K. Cao, Y. Lu et al., Amino acid-induced interface charge engineering enables highly reversible Zn anode. Adv. Funct. Mater. 31, 2103514 (2021). | 34. | Y. Li, P. Wu, W. Zhong, C. Xie, Y. Xie et al., A progressive nucleation mechanism enables stable zinc stripping-plating behavior. Energy Environ. Sci. 14, 5563-5571 (2021). | 35. | J. Yang, Y. Zhang, Z. Li, X. Xu, X. Su et al., Three birds with one stone: tetramethylurea as electrolyte additive for highly reversible Zn-metal anode. Adv. Funct. Mater. 32, 2209642 (2022). | 36. | Z. Luo, Y. Xia, S. Chen, X. Wu, R. Zeng et al., Synergistic “anchor-capture” enabled by amino and carboxyl for constructing robust interface of Zn anode. Nano-Micro Lett. 15, 205 (2023). | 37. | G. Gece, S. Bilgiç, A theoretical study on the inhibition efficiencies of some amino acids as corrosion inhibitors of nickel. Corros. Sci. 52, 3435-3443 (2010). | 38. | D. Li, Y. Tang, S. Liang, B. Lu, G. Chen et al., Self-assembled multilayers direct a buffer interphase for long-life aqueous zinc-ion batteries. Energy Environ. Sci. 16, 3381-3390 (2023). | 39. | B. Niu, Z. Li, D. Luo, X. Ma, Q. Yang et al., Nano-scaled hydrophobic confinement of aqueous electrolyte by a nonionic amphiphilic polymer for long-lasting and wide-temperature Zn-based energy storage. Energy Environ. Sci. 16, 1662-1675 (2023). | 40. | X. Gan, J. Tang, X. Wang, L. Gong, I. Zhitomirsky et al., Aromatic additives with designed functions ameliorating chemo-mechanical reliability for zinc-ion batteries. Energy Storage Mater. 59, 102769 (2023). | 41. | H.J.C. Berendsen, D. van der Spoel, R. van Drunen, GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91, 43-56 (1995). | 42. | Y. Duan, C. Wu, S. Chowdhury, M.C. Lee, G. Xiong et al., A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 24, 1999-2012 (2003). | 43. | T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580-592 (2012). | 44. | S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert et al., First principles methods using CASTEP. Z. Für Kristallogr. Cryst. Mater. 220, 567-570 (2005). | 45. | J. Wan, R. Wang, Z. Liu, L. Zhang, F. Liang et al., A double-functional additive containing nucleophilic groups for high-performance Zn-ion batteries. ACS Nano 17, 1610-1621 (2023). | 46. | H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. Engl. 59, 9377-9381 (2020). | 47. | D. Wang, D. Lv, H. Liu, S. Zhang, C. Wang et al., In situ formation of nitrogen-rich solid electrolyte interphase and simultaneous regulating solvation structures for advanced Zn metal batteries. Angew. Chem. Int. Ed. 61, e202212839 (2022). | 48. | Y. Liu, Y. An, L. Wu, J. Sun, F. Xiong et al., Interfacial chemistry modulation via amphoteric glycine for a highly reversible zinc anode. ACS Nano 17, 552-560 (2023). | 49. | C. Meng, W.-D. He, H. Tan, X.-L. Wu, H. Liu et al., A eutectic electrolyte for an ultralong-lived Zn//V2O5 cell: an in situ generated gradient solid-electrolyte interphase. Energy Environ. Sci. 16, 3587-3599 (2023). | 50. | L. Cao, D. Li, E. Hu, J. Xu, T. Deng et al., Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 142, 21404-21409 (2020). | 51. | J. Xu, W. Lv, W. Yang, Y. Jin, Q. Jin et al., In situ construction of protective films on Zn metal anodes via natural protein additives enabling high-performance zinc ion batteries. ACS Nano 16, 11392-11404 (2022). | 52. | Y. Zhao, R. Zhou, Z. Song, X. Zhang, T. Zhang et al., Interfacial designing of MnO2 half-wrapped by aromatic polymers for high-performance aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 61, e202212231 (2022). | 53. | Y. Wang, L.-E. Mo, X. Zhang, Y. Ren, T. Wei et al., Facet-termination promoted uniform Zn (100) deposition for high-stable zinc-ion batteries. Adv. Energy Mater. 13, 2301517 (2023). | 54. | Z. Zhao, P. Li, Z. Zhang, H. Zhang, G. Li, Dendrite-free zinc anode enabled by Buffer-like additive via strong cationic specific absorption. Chem. Eng. J. 454, 140435 (2023). | 55. | T. Zhou, Y. Mu, L. Chen, D. Li, W. Liu et al., Toward stable zinc aqueous rechargeable batteries by anode morphology modulation via polyaspartic acid additive. Energy Storage Mater. 45, 777-785 (2022). | 56. | Y. Liu, J. Wang, J. Sun, F. Xiong, Q. Liu et al., A glutamate anion boosted zinc anode for deep cycling aqueous zinc ion batteries. J. Mater. Chem. A 10, 25029-25038 (2022). | 57. | Q. Wen, H. Fu, Z.-Y. Wang, Y.-D. Huang, Z.-J. He et al., A hydrophobic layer of amino acid enabling dendrite-free Zn anodes for aqueous zinc-ion batteries. J. Mater. Chem. A 10, 17501-17510 (2022). | 58. | Y. Li, Y. Wang, Y. Xu, W. Tian, J. Wang et al., Dynamic biomolecular “mask” stabilizes Zn anode. Small 18, 2202214 (2022). | 59. | Z. Hu, F. Zhang, A. Zhou, X. Hu, Q. Yan et al., Highly reversible Zn metal anodes enabled by increased nucleation overpotential. Nano-Micro Lett. 15, 171 (2023). | 60. | H. Wang, A. Zhou, Z. Hu, X. Hu, F. Zhang et al., Toward simultaneous dense zinc deposition and broken side-reaction loops in the Zn/V2O5 system. Angew. Chem. Int. Ed. (2024). |
|
[1] |
Xiaoyu Liu, Yiming Guo, Fanghua Ning, Yuyu Liu, Siqi Shi, Qian Li, Jiujun Zhang, Shigang Lu, Jin Yi. Fundamental Understanding of Hydrogen Evolution Reaction on Zinc Anode Surface: A First-Principles Study[J]. Nano-Micro Letters, 2024, 16(1): 111-. |
|
|
|
|