32. |
Z.-H. Su, R.-H. Wang, J.-H. Huang, R. Sun, Z.-X. Qin et al., Silver vanadate (Ag 0.33V 2O 5) nanorods from Ag intercalated vanadium pentoxide for superior cathode of aqueous zinc-ion batteries. Rare Met. 41, 2844-2852 ( 2022). https://doi.org/10.1007/s12598-022-02026-w
|
33. |
W. Qiu, Y. Tian, Z. Lin, S. Lin, Z. Geng et al., High rate and ultralong life flexible all-solid-state zinc ion battery based on electron density modulated NiCo 2O 4 nanosheets. J. Energy Chem. 70, 283-291 ( 2022). https://doi.org/10.1016/j.jechem.2022.02.012
|
34. |
|
35. |
Y. Zhang, Y. Liu, Z. Liu, X. Wu, Y. Wen et al., MnO 2 cathode materials with the improved stability via nitrogen doping for aqueous zinc-ion batteries. J. Energy Chem. 64, 23-32 ( 2022). https://doi.org/10.1016/j.jechem.2021.04.046
|
36. |
J. Lv, B. Wang, J. Hao, H. Ding, L. Fan et al., Single-crystalline Mn-based oxide as a high-rate and long-life cathode material for potassium-ion battery. eScience 3, 100081 2023). https://doi.org/10.1016/j.esci.2022.10.007
|
37. |
S. Wang, W. Ma, Z. Sang, F. Hou, W. Si et al., Dual-modification of manganese oxide by heterostructure and cation pre-intercalation for high-rate and stable zinc-ion storage. J. Energy Chem. 67, 82-91 ( 2022). https://doi.org/10.1016/j.jechem.2021.09.042
|
38. |
|
39. |
M. Yang, Y. Wang, Z. Sun, H. Mi, S. Sun et al., Anti-aggregation growth and hierarchical porous carbon encapsulation enables the C@VO 2 cathode with superior storage capability for aqueous zinc-ion batteries. J. Energy Chem. 67, 645-654 ( 2022). https://doi.org/10.1016/j.jechem.2021.10.025
|
40. |
D.-L. Ba, W.-H. Zhu, Y.-Y. Li, J.-P. Liu, Synergistically enhancing cycleability and rate performance of sodium titanate nanowire anode via hydrogenation and carbon coating for advanced sodium ion batteries. Rare Met. 41, 4075-4085 ( 2022). https://doi.org/10.1007/s12598-022-02082-2
|
41. |
N. Wang, Z. Wu, Y. Long, D. Chen, C. Geng et al., MXene-assisted polymer coating from aqueous monomer solution towards dendrite-free zinc anodes. J. Energy Chem. 73, 277-284 ( 2022). https://doi.org/10.1016/j.jechem.2022.06.009
|
42. |
Z. Wei, J. Wang, S. Guo, S.C. Tan, Towards highly salt-rejecting solar interfacial evaporation: Photothermal materials selection, structural designs, and energy management. Nano Res. Energy 1, e9120014 ( 2022). https://doi.org/10.26599/nre.2022.9120014
|
43. |
H. Hong, L. Jiang, H. Tu, J. Hu, K.-S. Moon et al., Rational design and evaluation of UV curable nano-silver ink applied in highly conductive textile-based electrodes and flexible silver-zinc batteries. J. Mater. Sci. Technol. 101, 294-307 ( 2022). https://doi.org/10.1016/j.jmst.2021.04.061
|
44. |
F. Yuan, Y.-C. Shao, B. Wang, Y.-S. Wu, D. Zhang et al., Recent progress in application of cobalt-based compounds as anode materials for high-performance potassium-ion batteries. Rare Met. 41, 3301-3321 ( 2022). https://doi.org/10.1007/s12598-022-02052-8
|
45. |
S. Zhu, Y. Dai, J. Li, C. Ye, W. Zhou et al., Cathodic Zn underpotential deposition: an evitable degradation mechanism in aqueous zinc-ion batteries. Sci. Bull. 67, 1882-1889 ( 2022). https://doi.org/10.1016/j.scib.2022.08.023
|
46. |
|
47. |
X. Li, S. Zhao, G. Qu, X. Wang, P. Hou et al., Defect engineering in Co-doped Ni 3S 2 nanosheets as cathode for high-performance aqueous zinc ion battery. J. Mater. Sci. Technol. 118, 190-198 ( 2022). https://doi.org/10.1016/j.jmst.2021.12.027
|
48. |
Y.-H. Du, X.-Y. Liu, X.-Y. Wang, J.-C. Sun, Q.-Q. Lu et al., Freestanding strontium vanadate/carbon nanotube films for long-life aqueous zinc-ion batteries. Rare Met. 41, 415-424 ( 2022). https://doi.org/10.1007/s12598-021-01777-2
|
49. |
S.-B. Wang, Q. Ran, W.-B. Wan, H. Shi, S.-P. Zeng et al., Ultrahigh-energy and-power aqueous rechargeable zinc-ion microbatteries based on highly cation-compatible vanadium oxides. J. Mater. Sci. Technol. 120, 159-166 ( 2022). https://doi.org/10.1016/j.jmst.2022.01.007
|
50. |
S. Payandeh, F. Strauss, A. Mazilkin, A. Kondrakov, T. Brezesinski, Tailoring the LiNbO 3 coating of Ni-rich cathode materials for stable and high-performance all-solid-state batteries. Nano Res. Energy 1, e9120016 ( 2022). https://doi.org/10.26599/nre.2022.9120016
|
51. |
S. Gao, X. Zhao, Q. Fu, T. Zhang, J. Zhu et al., Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells. J. Mater. Sci. Technol. 126, 152-160 ( 2022). https://doi.org/10.1016/j.jmst.2022.03.012
|
52. |
X.-J. Dai, X.-X. Niu, W.-Q. Fu, D. Zheng, W.-X. Liu et al., Bismuth-based materials for rechargeable aqueous batteries and water desalination. Rare Met. 41, 287-303 ( 2022). https://doi.org/10.1007/s12598-021-01853-7
|
53. |
B. Zhang, L. Qin, Y. Fang, Y. Chai, X. Xie et al., Tuning Zn 2+ coordination tunnel by hierarchical gel electrolyte for dendrite-free zinc anode. Sci. Bull. 67, 955-962 ( 2022). https://doi.org/10.1016/j.scib.2022.01.027
|
54. |
J. Liang, Q. Liu, A. Ali Alshehri, X. Sun, Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res Energy 1, e9120010 ( 2022). https://doi.org/10.2599/nre.2022.9120010
|
55. |
L. Zhang, S. Yang, W. Fu, Y. Cui, J. Wang et al., Plasma-induced ε-MnO 2 based aqueous zinc-ion batteries and their dissolution-deposition mechanism. J. Mater. Sci. Technol. 127, 206-213 ( 2022). https://doi.org/10.1016/j.jmst.2022.03.028
|
56. |
X. Wu, X. Feng, J. Yuan, X. Yang, H. Shu et al., Thiophene functionalized porphyrin complexes as novel bipolar organic cathodes with high energy density and long cycle life. Energy Storage Mater. 46, 252-258 ( 2022). https://doi.org/10.1016/j.ensm.2022.01.020
|
57. |
J. Wang, B. Zhang, Z. Cai, R. Zhan, W. Wang et al., Stable interphase chemistry of textured Zn anode for rechargeable aqueous batteries. Sci. Bull. 67, 716-724 ( 2022). https://doi.org/10.1016/j.scib.2022.01.010
|
58. |
|
59. |
Z. Liu, L. Li, L. Qin, S. Guo, G. Fang et al., Balanced interfacial ion concentration and migration steric hindrance promoting high-efficiency deposition/dissolution battery chemistry. Adv. Mater. 34, e2204681 ( 2022). https://doi.org/10.1002/adma.202204681
|
60. |
Y. Pan, Z. Liu, S. Liu, L. Qin, Y. Yang et al., Quasi-decoupled solid-liquid hybrid electrolyte for highly reversible interfacial reaction in aqueous zinc-manganese battery. Adv. Energy Mater. 13, 2203766 ( 2023). https://doi.org/10.1002/aenm.202203766
|
61. |
|
62. |
C. Li, B. Liu, N. Jiang, Y. Ding, Elucidating the charge-transfer and Li-ion-migration mechanisms in commercial lithium-ion batteries with advanced electron microscopy. Nano Res. Energy 1, e9120031 ( 2022). https://doi.org/10.2599/nre.2022.9120031
|
63. |
|
64. |
Y.-Y. Wang, X.-Q. Zhang, M.-Y. Zhou, J.-Q. Huang, Mechanism, quantitative characterization, and inhibition of corrosion in lithium batteries. Nano Res. Energy 2, e9120046 ( 2023). https://doi.org/10.26599/nre.2023.9120046
|
65. |
|
1. |
J. Zeng, L. Bi, Y. Cheng, B. Xu, A.K.-Y. Jen, Self-assembled monolayer enabling improved buried interfaces in blade-coated perovskite solar cells for high efficiency and stability. Nano Res. Energy 1, e9120004 ( 2022). https://doi.org/10.26599/nre.2022.9120004
|
2. |
|
3. |
X. Xuan, M. Qian, L. Pan, T. Lu, Y. Gao et al., A hollow tubular NiCo layacknered double hydroxide@Ag nanowire structure for high-power-density flexible aqueous Ni//Zn battery. J. Energy Chem. 70, 593-603 ( 2022). https://doi.org/10.1016/j.jechem.2021.12.013
|
4. |
G.-Y. Wang, X.-H. Wang, J.-F. Sun, Y.-M. Zhang, L.-R. Hou et al., Porous carbon nanofibers derived from low-softening-point coal pitch towards all-carbon potassium ion hybrid capacitors. Rare Met. 41, 3706-3716 ( 2022). https://doi.org/10.1007/s12598-022-02067-1
|
5. |
W. Li, P. Luo, Z. Fu, X. Yuan, M. Huang et al., Highly reversible and stable manganese (II/III)-centered polyoxometalates for neutral aqueous redox flow battery. Next Energy 1, 100028 2023). https://doi.org/10.1016/j.nxener.2023.100028
|
6. |
|
7. |
K. Wu, F. Ning, J. Yi, X. Liu, J. Qin et al., Host-guest supramolecular interaction behavior at the interface between anode and electrolyte for long life Zn anode. J. Energy Chem. 69, 237-243 ( 2022). https://doi.org/10.1016/j.jechem.2022.01.037
|
8. |
H.-J. Liang, X.-T. Li, W.-Z. Zheng, Z.-T. Liu, W. Yang et al., Rational design of heterostructured core-shell Co-Zn bimetallic selenides for improved sodium-ion storage. Rare Met. 41, 3381-3390 ( 2022). https://doi.org/10.1007/s12598-022-02035-9
|
9. |
X. Fang, L. Zeng, Z. Li, L.A. Robertson, I.A. Shkrob et al., A cooperative degradation pathway for organic phenoxazine catholytes in aqueous redox flow batteries. Next Energy 1, 100008 2023). https://doi.org/10.1016/j.nxener.2023.100008
|
10. |
S. Wang, J. Ma, X. Shi, Y. Zhu, Z.-S. Wu, Recent status and future perspectives of ultracompact and customizable micro-supercapacitors. Nano Res. Energy 1, e9120018 ( 2022). https://doi.org/10.26599/nre.2022.9120018
|
11. |
|
12. |
Y. Chai, X. Xie, Z. He, G. Guo, P. Wang et al., A smelting-rolling strategy for ZnIn bulk phase alloy anodes. Chem. Sci. 13, 11656-11665 ( 2022). https://doi.org/10.1039/d2sc04385h
|
13. |
|
14. |
C. Hou, G. Tai, Y. Liu, Z. Wu, X. Liang et al., Borophene-based materials for energy, sensors and information storage applications. Nano Res. Energy 2, e9120051 ( 2023). https://doi.org/10.26599/nre.2023.9120051
|
15. |
|
16. |
Y.-D. Guo, J.-C. Jiang, J. Xie, X. Wang, J.-Z. Li et al., Enhanced performance of core-shell structured sodium manganese hexacyanoferrate achieved by self-limiting Na +-Cs + ion exchange for sodium-ion batteries. Rare Met. 41, 3740-3751 ( 2022). https://doi.org/10.1007/s12598-022-02068-0
|
17. |
|
66. |
H. Liu, F. Liu, Z. Qu, J. Chen, H. Liu et al., High sulfur loading and shuttle inhibition of advanced sulfur cathode enabled by graphene network skin and N, P. F-doped mesoporous carbon interfaces for ultra-stable lithium sulfur battery. Nano Res. Energy 2, e9120049 ( 2023). https://doi.org/10.26599/nre.2023.9120049
|
67. |
|
68. |
X. Guo, C. Wang, W. Wang, Q. Zhou, W. Xu et al., Vacancy manipulating of molybdenum carbide MXenes to enhance Faraday reaction for high performance lithium-ion batteries. Nano Res. Energy 1, e9120026 ( 2022). https://doi.org/10.26599/nre.2022.9120026
|
69. |
X. Chen, P. Ruan, X. Wu, S. Liang, J. Zhou, Crystal structures, reaction mechanisms, and optimization strategies of MnO 2 cathode for aqueous rechargeable zinc batteries. Acta Phys. Chim. Sin. 38(11), 2111003 ( 2021). https://doi.org/10.3866/pku.whxb202111003
|
70. |
Q. Liu, Y. Hu, X. Yu, Y. Qin, T. Meng et al., The pursuit of commercial silicon-based microparticle anodes for advanced lithium-ion batteries: a review. Nano Res. Energy 1, e9120037 ( 2022). https://doi.org/10.26599/nre.2022.9120037
|
71. |
M. Wang, Y. Meng, K. Li, T. Ahmad, N. Chen et al., Toward dendrite-free and anti-corrosion Zn anodes by regulating a bismuth-based energizer. eScience 2, 509-517 ( 2022). https://doi.org/10.1016/j.esci.2022.04.003
|
72. |
H. Ye, Y. Li, Towards practical lean-electrolyte Li-S batteries: highly solvating electrolytes or sparingly solvating electrolytes? Nano Res. Energy 1, e9120012 ( 2022). https://doi.org/10.26599/nre.2022.9120012
|
73. |
Y. Liu, Y. Li, J. Sun, Z. Du, X. Hu et al., Present and future of functionalized Cu current collectors for stabilizing lithium metal anodes. Nano Res. Energy 2, e9120048 ( 2023). https://doi.org/10.26599/nre.2023.9120048
|
74. |
W. Lv, J. Meng, X. Li, C. Xu, W. Yang et al., Boosting zinc storage in potassium-birnessite via organic-inorganic electrolyte strategy with slight N-methyl-2-pyrrolidone additive. Energy Storage Mater. 54, 784-793 ( 2023). https://doi.org/10.1016/j.ensm.2022.11.011
|
75. |
|
76. |
M. Song, C.-L. Zhong, Achieving both high reversible and stable Zn anode by a practical glucose electrolyte additive toward high-performance Zn-ion batteries. Rare Met. 41, 356-360 ( 2022). https://doi.org/10.1007/s12598-021-01858-2
|
77. |
|
78. |
|
79. |
|
80. |
|
81. |
|
82. |
|
83. |
C. Guan, F. Hu, X. Yu, H.-L. Chen, G.-H. Song et al., High performance of HNaV 6O 16·4H 2O nanobelts for aqueous zinc-ion batteries with in situ phase transformation by Zn(CF 3SO 3) 2 electrolyte. Rare Met. 41, 448-456 ( 2022). https://doi.org/10.1007/s12598-021-01778-1
|
84. |
|
85. |
Z. Wang, M. Zhou, L. Qin, M. Chen, Z. Chen et al., Simultaneous regulation of cations and anions in an electrolyte for high-capacity, high-stability aqueous zinc-vanadium batteries. eScience 2, 209-218 ( 2022). https://doi.org/10.1016/j.esci.2022.03.002
|
86. |
X. Yu, F. Hu, Z.-Q. Guo, L. Liu, G.-H. Song et al., High-performance Cu 0.95V 2O 5 nanoflowersas cathode materials for aqueous zinc-ion batteries. Rare Met. 41, 29-36 ( 2022). https://doi.org/10.1007/s12598-021-01771-8
|
87. |
W. Lv, J. Meng, Y. Li, W. Yang, Y. Tian et al., Inexpensive and eco-friendly nanostructured birnessite-type δ-MnO 2: a design strategy from oxygen defect engineering and K + pre-intercalation. Nano Energy 98, 107274 2022). https://doi.org/10.1016/j.nanoen.2022.107274
|
88. |
H.-Z. Ren, J. Zhang, B. Wang, H. Luo, F. Jin et al., A V 2O 3@N-C cathode material for aqueous zinc-ion batteries with boosted zinc-ion storage performance. Rare Met. 41, 1605-1615 ( 2022). https://doi.org/10.1007/s12598-021-01892-0
|
89. |
Z. Liu, Y. Yang, S. Liang, B. Lu, J. Zhou, pH-buffer contained electrolyte for self-adjusted cathode-free Zn-MnO 2 batteries with coexistence of dual mechanisms. Small Struct. 2, 2100119 ( 2021). https://doi.org/10.1002/sstr.202100119
|
90. |
Z. Meng, Z. Qiu, Y. Shi, S. Wang, G. Zhang et al., Micro/nano metal-organic frameworks meet energy chemistry: a review of materials synthesis and applications. eScience 3, 100092 2023). https://doi.org/10.1016/j.esci.2023.100092
|
91. |
Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14, 218 ( 2022). https://doi.org/10.1007/s40820-022-00960-z
|
92. |
|
93. |
C. Li, X. Xie, H. Liu, P. Wang, C. Deng et al., Integrated ‘all-in-one’ strategy to stabilize zinc anodes for high-performance zinc-ion batteries. Natl. Sci. Rev. 9, nwab177 ( 2021). https://doi.org/10.1093/nsr/nwab177
|
94. |
|
95. |
Y. Tian, S. Chen, Y. He, Q. Chen, L. Zhang et al., A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries. Nano Res. Energy 1, e9120025 ( 2022). https://doi.org/10.26599/nre.2022.9120025
|
96. |
|
97. |
|
98. |
Z.-X. Zhu, Z.-W. Lin, Z.-W. Sun, P.-X. Zhang, C.-P. Li et al., Deciphering H +/Zn2 + co-intercalation mechanism of MOF-derived 2D MnO/C cathode for long cycle life aqueous zinc-ion batteries. Rare Met. 41, 3729-3739 ( 2022). https://doi.org/10.1007/s12598-022-02088-w
|
99. |
|
100. |
X. Chen, W. Li, Z. Zeng, D. Reed, X. Li et al., Engineering stable Zn-MnO 2 batteries by synergistic stabilization between the carbon nanofiber core and birnessite-MnO 2 nanosheets shell. Chem. Eng. J. 405, 126969 ( 2021). https://doi.org/10.1016/j.cej.2020.126969
|
101. |
X. Li, Q. Zhou, Z. Yang, X. Zhou, D. Qiu et al., Unraveling the role of nitrogen-doped carbon nanowires incorporated with MnO 2 nanosheets as high performance cathode for zinc-ion batteries. Energy Environ. Mater. 6, 12378 ( 2023). https://doi.org/10.1002/eem2.12378
|
102. |
A. Huang, J. Chen, W. Zhou, A. Wang, M. Chen et al., Electrodeposition of MnO 2 nanoflakes onto carbon nanotube film towards high-performance flexible quasi-solid-state Zn-MnO 2 batteries. J. Electroanal. Chem. 873, 114392 ( 2020). https://doi.org/10.1016/j.jelechem.2020.114392
|
103. |
S. Islam, M.H. Alfaruqi, J. Song, S. Kim, D.T. Pham et al., Carbon-coated manganese dioxide nanoparticles and their enhanced electrochemical properties for zinc-ion battery applications. J. Energy Chem. 26, 815-819 ( 2017). https://doi.org/10.1016/j.jechem.2017.04.002
|
104. |
C. Wang, Y. Zeng, X. Xiao, S. Wu, G. Zhong et al., γ-MnO 2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery. J. Energy Chem. 43, 182-187 ( 2020). https://doi.org/10.1016/j.jechem.2019.08.011
|
105. |
Z. Xiao, F. Xia, L. Xu, X. Wang, J. Meng et al., Suppressing the jahn-teller effect in Mn-based layered oxide cathode toward long-life potassium-ion batteries. Adv. Funct. Mater. 32, 2108244 ( 2022). https://doi.org/10.1002/adfm.202108244
|
106. |
C. Zhou, D. Wang, A. Li, E. Pan, H. Liu et al., Three-dimensional porous carbon doped with N, O and P heteroatoms as high-performance anode materials for sodium ion batteries. Chem. Eng. J. 380, 122457 ( 2020). https://doi.org/10.1016/j.cej.2019.122457
|
107. |
|
108. |
J. Jin, Y. Liu, X. Zhao, H. Liu, S. Deng et al., Annealing in argon universally upgrades the Na-storage performance of Mn-based layered oxide cathodes by creating bulk oxygen vacancies. Angew. Chem. Int. Ed. 62(15), e202219230 ( 2023). https://doi.org/10.1002/anie.202219230
|
109. |
Y. Cheng, Y. Jiao, P. Wu, Manipulating Zn 002 deposition plane with zirconium ion crosslinked hydrogel electrolyte toward dendrite free Zn metal anodes. Energy Environ. Sci. 16(10), 4561-4571 ( 2023). https://doi.org/10.1039/D3EE02114A
|
110. |
|
111. |
Z. Meng, Y. Jiao, P. Wu, Alleviating side reactions on Zn anodes for aqueous batteries by a cell membrane derived phosphorylcholine zwitterionic protective layer. Angew. Chem. Int. Ed. 62(31), e202307271 ( 2023). https://doi.org/10.1002/anie.202307271
|
112. |
D. Feng, Y. Jiao, P. Wu, Proton-reservoir hydrogel electrolyte for long-term cycling Zn/PANI batteries in wide temperature range. Angew. Chem. Int. Ed. 62(1), e202215060 ( 2023). https://doi.org/10.1002/anie.202215060
|
113. |
W. Li, Y. Ma, H. Shi, K. Jiang, D. Wang, Cu 7Te 4 as an anode material and Zn dendrite inhibitor for aqueous Zn-ion battery. Adv. Funct. Mater. 32(38), 2205602 ( 2022). https://doi.org/10.1002/adfm.202205602
|
114. |
W. Liu, Z. Zhao, T. Li, S. Li, H. Zhang et al., A high potential biphenol derivative cathode: toward a highly stable air-insensitive aqueous organic flow battery. Sci. Bull. 66(5), 457-463 ( 2021). https://doi.org/10.1016/j.scib.2020.08.042
|
115. |
W. Li, Y. Ma, P. Li, X. Jing, K. Jiang, D. Wang, Electrochemically activated Cu 2-XTe as an ultraflat discharge plateau, low reaction potential, and stable anode material for aqueous Zn-ion half and full batteries. Adv. Energy Mater. 11(42), 2102607 ( 2021). https://doi.org/10.1002/aenm.202102607
|
116. |
Y. Gao, B.-F. Cui, J.-J. Wang, Z.-Y. Sun, Q. Chen et al., Improving Li reversibility in Li metal batteries through uniform dispersion of Ag nanoparticles on graphene. Rare Met. 41, 3391-3400 ( 2022). https://doi.org/10.1007/s12598-022-02044-8
|
18. |
L. Meng, L. Li, Recent research progress on operational stability of metal oxide/sulfide photoanodes in photoelectrochemical cells. Nano Res. Energy 1, e9120020 ( 2022). https://doi.org/10.26599/nre.2022.9120020
|
19. |
X. Tong, Y. Li, N. Pang, Y. Zhou, D. Wu et al., Highly active cobalt-doped nickel sulfide porous nanocones for high-performance quasi-solid-state zinc-ion batteries. J. Energy Chem. 66, 237-249 ( 2022). https://doi.org/10.1016/j.jechem.2021.08.020
|
20. |
|
21. |
X. Guo, H. Sun, C. Li, S. Zhang, Z. Li et al., Defect-engineered Mn 3O 4/CNTs composites enhancing reaction kinetics for zinc-ions storage performance. J. Energy Chem. 68, 538-547 ( 2022). https://doi.org/10.1016/j.jechem.2021.12.033
|
22. |
|
23. |
|
24. |
Y. Liu, S. Liu, X. Xie, Z. Li, P. Wang et al., A functionalized separator enables dendrite-free Zn anode via metal-polydopamine coordination chemistry. InfoMat 5, e12374 ( 2023). https://doi.org/10.1002/inf2.12374
|
25. |
|
26. |
J. Yan, F. Ye, Q. Dai, X. Ma, Z. Fang et al., Recent progress in carbon-based electrochemical catalysts: from structure design to potential applications. Nano Res. Energy 2, e9120047 ( 2023). https://doi.org/10.26599/nre.2023.9120047
|
27. |
M. Chen, W. Zhou, Q. Tian, X. Han, Y. Tan et al., Artificial solid electrolyte interface layer based on sodium titanate hollow microspheres assembled by nanotubes to stabilize zinc metal electrodes. J. Energy Chem. 71, 539-546 ( 2022). https://doi.org/10.1016/j.jechem.2022.03.026
|
28. |
J.-Y. Xie, K. Wang, N.-N. Li, G.-L. Lei, H.-S. Mei et al., Rational design of integrative CNTs@Ge nanotube films as binder-free electrodes for potassium storage. Rare Met. 41, 3107-3116 ( 2022). https://doi.org/10.1007/s12598-022-01998-z
|
29. |
|
30. |
H. Xue, H. Gong, Y. Yamauchi, T. Sasaki, R. Ma, Photo-enhanced rechargeable high-energy-density metal batteries for solar energy conversion and storage. Nano Res. Energy 1, e9120007 ( 2022). https://doi.org/10.26599/nre.2022.9120007
|
31. |
S. Gao, P. Ju, Z. Liu, L. Zhai, W. Liu et al., Electrochemically induced phase transition in a nanoflower vanadium tetrasulfide cathode for high-performance zinc-ion batteries. J. Energy Chem. 69, 356-362 ( 2022). https://doi.org/10.1016/j.jechem.2022.01.003
|
117. |
W. Li, X. Jing, Y. Ma, M. Chen, M. Li et al., Phosphorus-doped carbon sheets decorated with SeS 2 as a cathode for aqueous Zn-SeS 2 battery. Chem. Eng. J. 420(Part 1),129920 ( 2021). https://doi.org/10.1016/j.cej.2021.129920
|
118. |
X. Xie, J. Li, Z. Xing, B. Lu, S. Liang et al., Biocompatible zinc battery with programmable electro-cross-linked electrolyte. Natl. Sci. Rev. 10(3), nwac281 ( 2023). https://doi.org/10.1093/nsr/nwac281
|
119. |
S. Lei, Z. Liu, C. Liu, J. Li, B. Lu et al., Opportunities for biocompatible and safe zinc-based batteries. Energy Environ. Sci. 15(12), 4911-4927 ( 2022). https://doi.org/10.1039/D2EE02267B
|
120. |
|