1. |
M.G. Say, I. Sahalianov, R. Brooke, L. Migliaccio, E.D. Głowacki et al., Ultrathin paper microsupercapacitors for electronic skin applications. Adv. Mater. Technol. 7, 2101420 ( 2022). https://doi.org/10.1002/admt.202101420
|
2. |
Z. Wang, S. Yao, S. Wang, Z. Liu, X. Wan et al., Self-powered energy harvesting and implantable storage system based on hydrogel-enabled all-solid-state supercapacitor and triboelectric nanogenerator. Chem. Eng. J. 463, 142427 ( 2023). https://doi.org/10.1016/j.cej.2023.142427
|
3. |
|
4. |
|
5. |
W. Cheng, J. Fu, H. Hu, D. Ho, Interlayer structure engineering of MXene-based capacitor-type electrode for hybrid micro-supercapacitor toward battery-level energy density. Adv. Sci. 8, e2100775 ( 2021). https://doi.org/10.1002/advs.202100775
|
6. |
Z. Cao, H. Hu, D. Ho, Micro-redoxcapacitor: a hybrid architecture out of the notorious energy-power density dilemma. Adv. Funct. Mater. 32, 2270111 ( 2022). https://doi.org/10.1002/adfm.202270111
|
7. |
Z. Cao, G. Liang, D. Ho, C. Zhi, H. Hu, Interlayer injection of low-valence Zn atoms to activate MXene-based micro-redox capacitors with battery-type voltage plateaus. Adv. Funct. Mater. 33, 2303060 ( 2023). https://doi.org/10.1002/adfm.202303060
|
8. |
Y. Wu, H. Hu, C. Yuan, J. Song, M. Wu, Electrons/ions dual transport channels design: concurrently tuning interlayer conductivity and space within re-stacked few-layered MXenes film electrodes for high-areal-capacitance stretchable micro-supercapacitor-arrays. Nano Energy 74, 104812 2020). https://doi.org/10.1016/j.nanoen.2020.104812
|
9. |
Z. Duan, C. Hu, W. Liu, J. Liu, Z. Chu et al., An all-MXene-based flexible, seamless system with integrated wireless charging coil, micro-supercapacitor, and photodetector. Adv. Mater. Technol. 8, 2300157 ( 2023). https://doi.org/10.1002/admt.202300157
|
10. |
A. Khodabandehlo, A. Noori, M.S. Rahmanifar, M.F. El-Kady, R.B. Kaner et al., Laser-scribed graphene-polyaniline microsupercapacitor for internet-of-things applications. Adv. Funct. Mater. 32, 2204555 ( 2022). https://doi.org/10.1002/adfm.202204555
|
11. |
C. Gao, J. Huang, Y. Xiao, G. Zhang, C. Dai et al., A seamlessly integrated device of micro-supercapacitor and wireless charging with ultrahigh energy density and capacitance. Nat. Commun. 12, 2647 ( 2021). https://doi.org/10.1038/s41467-021-22912-8
|
12. |
|
13. |
J. Liang, H. Sheng, H. Ma, P. Wang, Q. Wang et al., Transparent electronic skin from the integration of strain sensors and supercapacitors. Adv. Mater. Technol. 8, 2201234 ( 2023). https://doi.org/10.1002/admt.202201234
|
14. |
Y. Yu, J. Nassar, C. Xu, J. Min, Y. Yang et al., Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci. Robot. 5, eaaz7946 ( 2020). https://doi.org/10.1126/scirobotics.aaz7946
|
15. |
F. Wen, Z. Sun, T. He, Q. Shi, M. Zhu et al., Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv. Sci. 7, 2000261 ( 2020). https://doi.org/10.1002/advs.202000261
|
16. |
C. Gao, J. Gao, C. Shao, Y. Xiao, Y. Zhao et al., Versatile origami micro-supercapacitors array as a wind energy harvester. J. Mater. Chem. A 6, 19750-19756 ( 2018). https://doi.org/10.1039/C8TA05148H
|
17. |
Z.-S. Wu, K. Parvez, X. Feng, K. Müllen, Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 4, 2487 ( 2013). https://doi.org/10.1038/ncomms3487
|
18. |
J. Atoyo, M.R. Burton, J. McGettrick, M.J. Carnie, Enhanced electrical conductivity and seebeck coefficient in PEDOT: PSS via a two-step ionic liquid and NaBH 4 treatment for organic thermoelectrics. Polymers 12, 559 ( 2020). https://doi.org/10.3390/polym12030559
|
19. |
M.Y. Teo, N. Kim, S. Kee, B.S. Kim, G. Kim et al., Highly stretchable and highly conductive PEDOT: PSS/ionic liquid composite transparent electrodes for solution-processed stretchable electronics. ACS Appl. Mater. Interfaces 9, 819-826 ( 2017). https://doi.org/10.1021/acsami.6b11988
|
20. |
S. Kee, H. Kim, S.H.K. Paleti, A. El Labban, M. Neophytou et al., Highly stretchable and air-stable PEDOT: PSS/ionic liquid composites for efficient organic thermoelectrics. Chem. Mater. 31, 3519-3526 ( 2019). https://doi.org/10.1021/acs.chemmater.9b00819
|
21. |
S.H. Chang, C.-H. Chiang, F.-S. Kao, C.-L. Tien, C.-G. Wu, Unraveling the enhanced electrical conductivity of PEDOT: PSS thin films for ITO-free organic photovoltaics. IEEE Photonics J. 6, 8400307 ( 2014). https://doi.org/10.1109/JPHOT.2014.2331254
|
22. |
|
23. |
R. del Olmo, T.C. Mendes, M. Forsyth, N. Casado, Mixed ionic and electronic conducting binders containing PEDOT: PSS and organic ionic plastic crystals toward carbon-free solid-state battery cathodes. J. Mater. Chem. A 10, 19777-19786 ( 2022). https://doi.org/10.1039/D1TA09628A
|
24. |
Z. Li, G. Ma, R. Ge, F. Qin, X. Dong et al., Free-standing conducting polymer films for high-performance energy devices. Angew. Chem. Int. Ed. 55, 979-982 ( 2016). https://doi.org/10.1002/anie.201509033
|
25. |
A. Noori, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 48, 1272-1341 ( 2019). https://doi.org/10.1039/C8CS00581H
|
26. |
G.P. Pandey, A.C. Rastogi, C.R. Westgate, All-solid-state supercapacitors with poly(3, 4-ethylenedioxythiophene)-coated carbon fiber paper electrodes and ionic liquid gel polymer electrolyte. J. Power Sources 245, 857-865 ( 2014). https://doi.org/10.1016/j.jpowsour.2013.07.017
|
27. |
|
28. |
Y. Chen, J. Xu, Y. Yang, Y. Zhao, W. Yang et al., The preparation and electrochemical properties of PEDOT: PSS/MnO 2/PEDOT ternary film and its application in flexible micro-supercapacitor. Electrochim. Acta 193, 199-205 ( 2016). https://doi.org/10.1016/j.electacta.2016.02.021
|
29. |
W. Gao, N. Singh, L. Song, Z. Liu, A.L. Reddy et al., Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 6, 496-500 ( 2011). https://doi.org/10.1038/nnano.2011.110
|
30. |
M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 ( 2013). https://doi.org/10.1038/ncomms2446
|
31. |
H.U. Lee, S.W. Kim, Pen lithography for flexible microsupercapacitors with layer-by-layer assembled graphene flake/PEDOT nanocomposite electrodes. J. Mater. Chem. A 5, 13581-13590 ( 2017). https://doi.org/10.1039/C7TA02936E
|
32. |
B. Nagar, D.P. Dubal, L. Pires, A. Merkoçi, P. Gómez-Romero, Design and fabrication of printed paper-based hybrid micro-supercapacitor by using graphene and redox-active electrolyte. Chemsuschem 11, 1849-1856 ( 2018). https://doi.org/10.1002/cssc.201800426
|
33. |
Z. Su, Y. Jin, H. Wang, Z. Li, L. Huang et al., PEDOT: PSS and its composites for flexible supercapacitors. ACS Appl. Energy Mater. 5, 11915-11932 ( 2022). https://doi.org/10.1021/acsaem.2c01524
|
34. |
Y. Yang, L. He, C. Tang, P. Hu, X. Hong et al., Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors. Nano Res. 9, 2510-2519 ( 2016). https://doi.org/10.1007/s12274-016-1137-3
|
35. |
|
36. |
H. Pang, Y. Zhang, W.-Y. Lai, Z. Hu, W. Huang, Lamellar, K 2Co 3(P 2O 7) 2·2H 2O nanocrystal whiskers: high-performance flexible all-solid-state asymmetric micro-supercapacitors via inkjet printing. Nano Energy 15,303-312 ( 2015). https://doi.org/10.1016/j.nanoen.2015.04.034
|
37. |
|
38. |
X. Xiao, X. Peng, H. Jin, T. Li, C. Zhang et al., Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors. Adv. Mater. 25, 5091-5097 ( 2013). https://doi.org/10.1002/adma.201301465
|
39. |
A. de Izarra, S. Park, J. Lee, Y. Lansac, Y.H. Jang, Ionic liquid designed for PEDOT: PSS conductivity enhancement. J. Am. Chem. Soc. 140, 5375-5384 ( 2018). https://doi.org/10.1021/jacs.7b10306
|
40. |
H. Park, S.H. Lee, F.S. Kim, H.H. Choi, I.W. Cheong et al., Enhanced thermoelectric properties of PEDOT: PSS nanofilms by a chemical dedoping process. J. Mater. Chem. A 2, 6532-6539 ( 2014). https://doi.org/10.1039/C3TA14960A
|