1. |
|
2. |
|
3. |
K.A. Bannister, G. Giorgetti, S. Gupta, Wireless sensor networking for “Hot” applications: effects of temperature on signal strength, data collection and localization. In Proceedings of the 5th workshop on embedded networked sensors (HotEmNets’ 08). (2008), pp. 1-5
|
4. |
A. Beccari, D.A. Visani, S.A. Fedorov, M.J. Bereyhi, V. Boureau et al., Strained crystalline nanomechanical resonators with quality factors above 10 billion. Nat. Phys. 18, 436-441 ( 2022). https://doi.org/10.1038/s41567-021-01498-4
|
5. |
X. Xu, Q. Wang, J. Tian, L. Yang, Y. Fang et al., On the air buoyancy effect in MEMS-based gravity sensors for high resolution gravity measurements. IEEE Sens. J. 21, 22480-22488 ( 2021). https://doi.org/10.1109/JSEN.2021.3106667
|
6. |
R.P. Middlemiss, A. Samarelli, D.J. Paul, J. Hough, S. Rowan et al., Measurement of the earth tides with a MEMS gravimeter. Nature 531, 614-617 ( 2016). https://doi.org/10.1038/nature17397
|
7. |
V. Lakshminarayanan, N. Sriraam, The effect of temperature on the reliability of electronic components. 2014 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), (IEEE, Bangalore, India, 2014), pp. 1-6
|
8. |
L.T. Yeh, R.C. Chu, W.S. Janna, Thermal management of microelectronic equipment: heat transfer theory, analysis methods, and design practices. ASME press book series on electronic packaging. Appl. Mech. Rev. 56, B46-B48 ( 2003). https://doi.org/10.1115/1.1566408
|
9. |
|
10. |
L. Comenencia Ortiz, H.K. Kwon, J. Rodriguez, Y. Chen, G.D. Vukasin et al., Low-power dual mode MEMS resonators with PPB stability over temperature. J. Microelectromech. Syst. 29, 190-201 ( 2020). https://doi.org/10.1109/JMEMS.2020.2970609
|
11. |
M. Corato-Zanarella, A. Gil-Molina, X. Ji, M.C. Shin, A. Mohanty et al., Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths. Nat. Photonics 17, 157-164 ( 2023). https://doi.org/10.1038/s41566-022-01120-w
|
12. |
G. Liang, H. Huang, A. Mohanty, M.C. Shin, X. Ji et al. Robust, efficient, micrometre-scale phase modulators at visible wavelengths. Nat. Photonics 15, 908-913 ( 2021). https://doi.org/10.1038/s41566-021-00891-y
|
13. |
W.T. Hsu, A.R. Brown, Frequency trimming for MEMS resonator oscillators. 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum, (IEEE, Geneva, Switzerland, 2007), pp. 1088-1091
|
14. |
J.C. Salvia, R. Melamud, S.A. Chandorkar, S.F. Lord, T.W. Kenny, Real-time temperature compensation of MEMS oscillators using an integrated micro-oven and a phase-locked loop. J. Microelectromech. Syst. 19, 192-201 ( 2010). https://doi.org/10.1109/JMEMS.2009.2035932
|
15. |
C.A. Boano, K. Römer, N. Tsiftes, Mitigating the adverse effects of temperature on low-power wireless protocols. 2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems, (IEEE, Philadelphia, PA, USA, 2014), pp. 336-344
|
16. |
|
17. |
E. Baptista, K. Buisman, J.C. Vaz, C. Fager, Analysis of thermal coupling effects in integrated MIMO transmitters. 2017 IEEE MTT-S International Microwave Symposium (IMS), (IEEE, Honololu, HI, USA, 2017), pp. 75-78
|
18. |
X. Lu, P. Wang, D. Niyato, D.I. Kim, Z. Han, Wireless charging technologies: fundamentals, standards, and network applications. IEEE Commun. Surv. Tutor. 18, 1413-1452 ( 2016). https://doi.org/10.1109/COMST.2015.2499783
|
19. |
L. Portilla, K. Loganathan, H. Faber, A. Eid, J.G.D. Hester et al., Wirelessly powered large-area electronics for the Internet of Things. Nat. Electron. 6, 10-17 ( 2023). https://doi.org/10.1038/s41928-022-00898-5
|
20. |
W. Arden, M. Brillouët, P. Cogez, M. Graef, B. Huizing et al., More-than-Moore white paper. (International Roadmap for Semiconductors, 2010). http://www.itrs2.net/uploads/4/9/7/7/49775221/irc-itrs-mtm-v2_3.pdf
URL
|
21. |
|
22. |
|
23. |
|
24. |
|
25. |
|
26. |
F. Tian, B. Song, X. Chen, N.K. Ravichandran, Y. Lv et al., Unusual high thermal conductivity in boron arsenide bulk crystals. Science 361, 582-585 ( 2018). https://doi.org/10.1126/science.aat7932
|
27. |
|
28. |
R. van Erp, R. Soleimanzadeh, L. Nela, G. Kampitsis, E. Matioli, Co-designing electronics with microfluidics for more sustainable cooling. Nature 585, 211-216 ( 2020). https://doi.org/10.1038/s41586-020-2666-1
|
29. |
|
30. |
L.L. Baranowski, G. Jeffrey Snyder, E.S. Toberer, Effective thermal conductivity in thermoelectric materials. J. Appl. Phys. 113, 204904 ( 2013). https://doi.org/10.1063/1.4807314
|
31. |
W.Y. Chen, X.L. Shi, J. Zou, Z.G. Chen, Thermoelectric coolers for on-chip thermal management: materials, design, and optimization. Mater. Sci. Eng. R. Rep. 151, 100700 ( 2022). https://doi.org/10.1016/j.mser.2022.100700
|
32. |
G. Li, J. Garcia Fernandez, D.A. Lara Ramos, V. Barati, N. Pérez et al., Integrated microthermoelectric coolers with rapid response time and high device reliability. Nat. Electron. 1, 555-561 ( 2018). https://doi.org/10.1038/s41928-018-0148-3
|
33. |
H. Bottner, Micropelt miniaturized thermoelectric devices: small size, high cooling power densities, short response time. ICT 2005.24th International Conference on Thermoelectrics, (IEEE, Clemson, SC, USA, 2005), pp. 1-8
|
34. |
|
35. |
Y. Su, J. Lu, D. Villaroman, D. Li, B. Huang, Free-standing planar thermoelectric microrefrigerators based on nano-grained SiGe thin films for on-chip refrigeration. Nano Energy 48, 202-210 ( 2018). https://doi.org/10.1016/j.nanoen.2018.03.054
|
36. |
Q. Jin, Y. Zhao, X. Long, S. Jiang, C. Qian et al., Flexible carbon nanotube-epitaxially grown nanocrystals for micro-thermoelectric modules. Adv. Mater. 35, 2304751 ( 2023). https://doi.org/10.1002/adma.202304751
|
37. |
Q. Zhu, S. Wang, X. Wang, A. Suwardi, M.H. Chua et al., Bottom-up engineering strategies for high-performance thermoelectric materials. Nano-Micro Lett. 13, 119 ( 2021). https://doi.org/10.1007/s40820-021-00637-z
|
38. |
D.M. Rowe, CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, FL, 1995)
|
39. |
|
40. |
G.J. Snyder, J.R. Lim, C.K. Huang, J.P. Fleurial, Thermoelectric microdevice fabricated by a MEMS-like electrochemical process. Nat. Mater. 2, 528-531 ( 2003). https://doi.org/10.1038/nmat943
|
41. |
G. Bulman, P. Barletta, J. Lewis, N. Baldasaro, M. Manno et al., Superlattice-based thin-film thermoelectric modules with high cooling fluxes. Nat. Commun. 7, 10302 ( 2016). https://doi.org/10.1038/ncomms10302
|
42. |
Y. Chen, X. Nie, C. Sun, S. Ke, W. Xu et al., Realizing high-performance BiSbTe magnetic flexible films via acceleration movement and hopping migration of carriers. Adv. Funct. Mater. 32, 2111373 ( 2022). https://doi.org/10.1002/adfm.202111373
|
43. |
|
44. |
A. Gross, G. Hwang, B. Huang, H. Yang, N. Ghafouri, et al., High-performance micro scale thermoelectric cooler: an optimized 6-stage cooler. TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference, (IEEE, Denver, CO, USA, 2009), pp. 2413-2416
|
45. |
|
46. |
G.S. Nolas, J. Sharp, H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Springer, Berlin, Heidelberg, 2001)
|
47. |
L. Yin, F. Yang, X. Bao, W. Xue, Z. Du et al., Low-temperature sintering of Ag nanoparticles for high-performance thermoelectric module design. Nat. Energy 8, 665-674 ( 2023). https://doi.org/10.1038/s41560-023-01245-4
|
48. |
|
49. |
|
50. |
H. Bottner, J. Nurnus, A. Gavrikov, G. Kuhner, M. Jagle et al., New thermoelectric components using microsystem technologies. J. Microelectromech. Syst. 13, 414-420 ( 2004). https://doi.org/10.1109/JMEMS.2004.828740
|
51. |
V.A. Semeniouk, T.V. Pilipenko, Thermoelectric coolers with small response time. Fifteenth International Conference on Thermoelectrics. Proceedings ICT ’96, (IEEE, Pasadena, CA, USA, 2002), pp. 301-306
|
52. |
|
53. |
R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597-602 ( 2001). https://doi.org/10.1038/35098012
|
54. |
J. Mao, H. Zhu, Z. Ding, Z. Liu, G.A. Gamage et al., High thermoelectric cooling performance of n-type Mg 3Bi 2-based materials. Science 365, 495-498 ( 2019). https://doi.org/10.1126/science.aax7792
|
55. |
Z. Liu, W. Gao, H. Oshima, K. Nagase, C.H. Lee et al., Maximizing the performance of n-type Mg 3Bi 2 based materials for room-temperature power generation and thermoelectric cooling. Nat. Commun. 13, 1120 ( 2022). https://doi.org/10.1038/s41467-022-28798-4
|