1. |
Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi et al., Electrochemical energy storage for green grid. Chem. Rev. 111, 3577-3613 ( 2011). https://doi.org/10.1021/cr100290v
|
2. |
|
3. |
X.-T. Wang, Z.-Y. Gu, E.H. Ang, X.-X. Zhao, X.-L. Wu et al., Prospects for managing end-of-life lithium-ion batteries: present and future. Interdiscip. Mater. 1, 417-433 ( 2022). https://doi.org/10.1002/idm2.12041
|
4. |
D. Chao, W. Zhou, F. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6, eaba4098 ( 2020). https://doi.org/10.1126/sciadv.aba4098
|
5. |
|
6. |
|
7. |
H.-J. Liang, Z.-Y. Gu, X.-X. Zhao, J.-Z. Guo, J.-L. Yang et al., Advanced flame-retardant electrolyte for highly stabilized K-ion storage in graphite anode. Sci. Bull. 67, 1581-1588 ( 2022). https://doi.org/10.1016/j.scib.2022.07.002
|
8. |
R.Y. Wang, C.D. Wessells, R.A. Huggins, Y. Cui, Highly reversible open framework nanoscale electrodes for divalent ion batteries. Nano Lett. 13, 5748-5752 ( 2013). https://doi.org/10.1021/nl403669a
|
9. |
K. Wang, H. Li, Z. Xu, H. Wang, M. Ge et al., Emerging photo-integrated rechargeable aqueous zinc-ion batteries and capacitors toward direct solar energy conversion and storage. Carbon Neutr. 2, 37-53 ( 2023). https://doi.org/10.1002/cnl2.41
|
10. |
M. Zhu, H. Wang, W. Lin, D. Chan, H. Li et al., Amphipathic molecules endowing highly structure robust and fast kinetic vanadium-based cathode for high-performance zinc-ion batteries. Small Struct. 3, 2200016 ( 2022). https://doi.org/10.1002/sstr.202200016
|
11. |
H. Wang, H. Li, Y. Tang, Z. Xu, K. Wang et al., Stabilizing Zn anode interface by simultaneously manipulating the thermodynamics of Zn nucleation and overpotential of hydrogen evolution. Adv. Funct. Mater. 32, 2270271 ( 2022). https://doi.org/10.1002/adfm.202270271
|
12. |
D. Xie, Y. Sang, D.-H. Wang, W.-Y. Diao, F.-Y. Tao et al., ZnF 2-Riched inorganic/organic hybrid Sei: in situ-chemical construction and performance-improving mechanism for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62, e202216934 ( 2023). https://doi.org/10.1002/anie.202216934
|
13. |
J. Jiang, J. Liu, Iron anode-based aqueous electrochemical energy storage devices: recent advances and future perspectives. Interdiscip. Mater. 1, 116-139 ( 2022). https://doi.org/10.1002/idm2.12007
|
14. |
J.-L. Yang, J.-M. Cao, X.-X. Zhao, K.-Y. Zhang, S.-H. Zheng et al., Advanced aqueous proton batteries: working mechanism, key materials, challenges and prospects. EnergyChem 4, 100092 ( 2022). https://doi.org/10.1016/j.enchem.2022.100092
|
15. |
|
16. |
|
17. |
|
18. |
|
19. |
|
20. |
|
21. |
Y. Lu, X. Wu, Z. Li, H. Jiang, L. Liu et al., Na+/K+-codoped amorphous manganese oxide with enhanced performance for aqueous sodium-ion battery. J. Alloys Compd. 937, 168344 ( 2023). https://doi.org/10.1016/j.jallcom.2022.168344
|
22. |
C. Zhao, Q. Wang, Z. Yao, J. Wang, B. Sánchez-Lengeling et al., Rational design of layered oxide materials for sodium-ion batteries. Science 370, 708-711 ( 2020). https://doi.org/10.1126/science.aay9972
|
23. |
X. Zhang, X. Yang, G. Sun, S. Yao, Y. Xie et al., Hydration enables air-stable and high-performance layered cathode materials for both organic and aqueous potassium-ion batteries. Adv. Funct. Mater. 32, 2204318 ( 2022). https://doi.org/10.1002/adfm.202204318
|
24. |
|
25. |
H. Zhang, X. Tan, H. Li, S. Passerini, W. Huang, Assessment and progress of polyanionic cathodes in aqueous sodium batteries. Energy Environ. Sci. 14, 5788-5800 ( 2021). https://doi.org/10.1039/D1EE01392K
|
26. |
K.-Y. Zhang, Z.-Y. Gu, E.H. Ang, J.-Z. Guo, X.-T. Wang et al., Advanced polyanionic electrode materials for potassium-ion batteries: progresses, challenges and application prospects. Mater. Today 54, 189-201 ( 2022). https://doi.org/10.1016/j.mattod.2022.02.013
|
27. |
K. Holguin, M. Mohammadiroudbari, K. Qin, C. Luo, Organic electrode materials for non-aqueous, aqueous, and all-solid-state Na-ion batteries. J. Mater. Chem. A 9, 19083-19115 ( 2021). https://doi.org/10.1039/D1TA00528F
|
28. |
S. Zhang, C. Zhao, K. Zhu, J. Zhao, Y. Gao et al., An environment-friendly high-performance aqueous Mg-Na hybrid-ion battery using an organic polymer anode. Energy Environ. Mater. 6, 12388 ( 2023). https://doi.org/10.1002/eem2.12388
|
29. |
R. Wang, M. Shi, L. Li, Y. Zhao, L. Zhao et al., In-situ investigation and application of cyano-substituted organic electrode for rechargeable aqueous Na-ion batteries. Chem. Eng. J. 451, 138652 ( 2023). https://doi.org/10.1016/j.cej.2022.138652
|
30. |
K. Nakamoto, R. Sakamoto, Y. Sawada, M. Ito, S. Okada, Over 2 V aqueous sodium-ion battery with Prussian blue-type electrodes. Small Meth. 3, 1800220 ( 2019). https://doi.org/10.1002/smtd.201800220
|
31. |
|
32. |
|
33. |
|
34. |
A. Simonov, T. De Baerdemaeker, H.L.B. Boström, M.L. Ríos Gómez, H.J. Gray et al., Hidden diversity of vacancy networks in Prussian blue analogues. Nature 578, 256-260 ( 2020). https://doi.org/10.1038/s41586-020-1980-y
|
35. |
J. Peng, W. Zhang, Q. Liu, J. Wang, S. Chou et al., Prussian blue analogues for sodium-ion batteries: past, present, and future. Adv. Mater. 34, e2108384 ( 2022). https://doi.org/10.1002/adma.202108384
|
36. |
P.N. Le Pham, R. Wernert, M. Cahu, M.T. Sougrati, G. Aquilanti et al., Prussian blue analogues for potassium-ion batteries: insights into the electrochemical mechanisms. J. Mater. Chem. A 11, 3091-3104 ( 2023). https://doi.org/10.1039/d2ta08439b
|
37. |
Z. Wang, W. Zhuo, J. Li, L. Ma, S. Tan et al., Regulation of ferric iron vacancy for Prussian blue analogue cathode to realize high-performance potassium ion storage. Nano Energy 98, 107243 ( 2022). https://doi.org/10.1016/j.nanoen.2022.107243
|
38. |
|
39. |
W. Zhuo, J. Li, X. Li, L. Ma, G. Yan et al., Improving rechargeability of Prussian blue cathode by graphene as conductive agent for sodium ion batteries. Surf. Interfaces 23, 100911 ( 2021). https://doi.org/10.1016/j.surfin.2020.100911
|
40. |
W. Shu, C. Han, X. Wang, Prussian blue analogues cathodes for nonaqueous potassium-ion batteries: past, present, and future. Adv. Funct. Mater. ( 2023). https://doi.org/10.1002/adfm.202309636
|
41. |
|
42. |
D. Ellis, M. Eckhoff, V.D. Neff, Electrochromism in the mixed-valence hexacyanides. 1. Voltammetric and spectral studies of the oxidation and reduction of thin films of Prussian blue. J. Phys. Chem. 85, 1225-1231 ( 1981). https://doi.org/10.1021/j150609a026
|
43. |
K. Itaya, T. Ataka, S. Toshima, Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes. J. Am. Chem. Soc. 104(18), 4767-4772 ( 1982). https://doi.org/10.1021/ja00382a006
|
44. |
|
45. |
M. Pasta, C.D. Wessells, R.A. Huggins, Y. Cui, A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. Commun. 3, 1149 ( 2012). https://doi.org/10.1038/ncomms2139
|
46. |
C.D. Wessells, R.A. Huggins, Y. Cui, Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun. 2, 550 ( 2011). https://doi.org/10.1038/ncomms1563
|
47. |
G. Fang, Q. Wang, J. Zhou, Y. Lei, Z. Chen et al., Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction. ACS Nano 13, 5635-5645 ( 2019). https://doi.org/10.1021/acsnano.9b00816
|
48. |
|
49. |
|
50. |
A. Zhou, W. Cheng, W. Wang, Q. Zhao, J. Xie et al., Hexacyanoferrate-type Prussian blue analogs: principles and advances toward high-performance sodium and potassium ion batteries. Adv. Energy Mater. 11, 2000943 ( 2021). https://doi.org/10.1002/aenm.202000943
|
51. |
D. Kim, T. Hwang, J.-M. Lim, M.-S. Park, M. Cho et al., Hexacyanometallates for sodium-ion batteries: insights into higher redox potentials using d electronic spin configurations. Phys. Chem. Chem. Phys. 19, 10443-10452 ( 2017). https://doi.org/10.1039/c7cp00378a
|
52. |
|
53. |
N. Shimamoto, S.-I. Ohkoshi, O. Sato, K. Hashimoto, Control of charge-transfer-induced spin transition temperature on cobalt-iron Prussian blue analogues. Inorg. Chem. 41, 678-684 ( 2002). https://doi.org/10.1021/ic010915u
|
54. |
A. Paolella, C. Faure, V. Timoshevskii, S. Marras, G. Bertoni et al., A review on hexacyanoferrate-based materials for energy storage and smart windows: challenges and perspectives. J. Mater. Chem. A 5, 18919-18932 ( 2017). https://doi.org/10.1039/C7TA05121B
|
55. |
H.J. Buser, D. Schwarzenbach, W. Petter, A. Ludi, The crystal structure of Prussian Blue: Fe4[Fe(CN)6] 3.xH 2O. Inorg. Chem. 16, 2704-2710 ( 1977). https://doi.org/10.1021/ic50177a008
|
56. |
J. Sun, H. Ye, J.A.S. Oh, A. Plewa, Y. Sun et al., Elevating the discharge plateau of Prussian blue analogs through low-spin fe redox induced intercalation pseudocapacitance. Energy Storage Mater. 43, 182-189 ( 2021). https://doi.org/10.1016/j.ensm.2021.09.004
|
57. |
M. Jiang, Z. Hou, L. Ren, Y. Zhang, J.-G. Wang, Prussian blue and its analogues for aqueous energy storage: from fundamentals to advanced devices. Energy Storage Mater. 50, 618-640 ( 2022). https://doi.org/10.1016/j.ensm.2022.06.006
|
58. |
|
59. |
Z. Wang, Y. Huang, D. Chu, C. Li, Y. Zhang et al., Continuous conductive networks built by Prussian blue cubes and mesoporous carbon lead to enhanced sodium-ion storage performances. ACS Appl. Mater. Interfaces 13, 38202-38212 ( 2021). https://doi.org/10.1021/acsami.1c06634
|
60. |
T. Shao, C. Li, C. Liu, W. Deng, W. Wang et al., Electrolyte regulation enhances the stability of Prussian blue analogues in aqueous Na-ion storage. J. Mater. Chem. A 7, 1749-1755 ( 2019). https://doi.org/10.1039/C8TA10860A
|
61. |
X. Wu, M. Sun, S. Guo, J. Qian, Y. Liu et al., Vacancy-free Prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium-ion batteries. ChemNanoMat 1, 188-193 ( 2015). https://doi.org/10.1002/cnma.201500021
|
62. |
L. Wang, J. Song, R. Qiao, L.A. Wray, M.A. Hossain et al., Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries. J. Am. Chem. Soc. 137, 2548-2554 ( 2015). https://doi.org/10.1021/ja510347s
|
63. |
M. Qin, W. Ren, J. Meng, X. Wang, X. Yao et al., Realizing superior Prussian blue positive electrode for potassium storage via ultrathin nanosheet assembly. ACS Sustain. Chem. Eng. 7, 11564-11570 ( 2019). https://doi.org/10.1021/acssuschemeng.9b01454
|
64. |
A. Zhou, Z. Xu, H. Gao, L. Xue, J. Li et al., Size-, water-, and defect-regulated potassium manganese hexacyanoferrate with superior cycling stability and rate capability for low-cost sodium-ion batteries. Small 15, e1902420 ( 2019). https://doi.org/10.1002/smll.201902420
|
65. |
L. Deng, J. Qu, X. Niu, J. Liu, J. Zhang et al., Defect-free potassium manganese hexacyanoferrate cathode material for high-performance potassium-ion batteries. Nat. Commun. 12, 2167 ( 2021). https://doi.org/10.1038/s41467-021-22499-0
|
66. |
Y. Shang, X. Li, J. Song, S. Huang, Z. Yang et al., Unconventional Mn vacancies in Mn-Fe Prussian blue analogs: suppressing jahn-teller distortion for ultrastable sodium storage. Chem 6, 1804-1818 ( 2020). https://doi.org/10.1016/j.chempr.2020.05.004
|
67. |
F. Gebert, D.L. Cortie, J.C. Bouwer, W. Wang, Z. Yan et al., Epitaxial nickel ferrocyanide stabilizes jahn-teller distortions of manganese ferrocyanide for sodium-ion batteries. Angew. Chem. Int. Ed. 60, 18519-18526 ( 2021). https://doi.org/10.1002/anie.202106240
|
68. |
L. Shen, Y. Jiang, Y. Liu, J. Ma, T. Sun et al., High-stability monoclinic nickel hexacyanoferrate cathode materials for ultrafast aqueous sodium ion battery. Chem. Eng. J. 388, 124228 ( 2020). https://doi.org/10.1016/j.cej.2020.124228
|
69. |
W. Ren, X. Chen, C. Zhao, Ultrafast aqueous potassium-ion batteries cathode for stable intermittent grid-scale energy storage. Adv. Energy Mater. 8, 1801413 ( 2018). https://doi.org/10.1002/aenm.201801413
|
70. |
S.-B. Son, Z. Zhang, J. Gim, C.S. Johnson, Y. Tsai et al., Transition metal dissolution in lithium-ion cells: a piece of the puzzle. J. Phys. Chem. C 127, 1767-1775 ( 2023). https://doi.org/10.1021/acs.jpcc.2c08234
|
71. |
Y. Zhang, A. Hu, D. Xia, S. Hwang, S. Sainio et al., Operando characterization and regulation of metal dissolution and redeposition dynamics near battery electrode surface. Nat. Nanotechnol. 18, 790-797 ( 2023). https://doi.org/10.1038/s41565-023-01367-6
|
72. |
D.H. Jang, Y.J. Shin, S.M. Oh, Dissolution of spinel oxides and capacity losses in 4 V Li / Li x Mn2 O 4 cells. J. Electrochem. Soc. 143, 2204-2211 ( 1996). https://doi.org/10.1149/1.1836981
|
73. |
X. Gao, Y.H. Ikuhara, C.A.J. Fisher, R. Huang, A. Kuwabara et al., Oxygen loss and surface degradation during electrochemical cycling of lithium-ion battery cathode material LiMn 2O 4. J. Mater. Chem. A 7, 8845-8854 ( 2019). https://doi.org/10.1039/C8TA08083F
|
74. |
T. Liu, A. Dai, J. Lu, Y. Yuan, Y. Xiao et al., Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery. Nat. Commun. 10, 4721 ( 2019). https://doi.org/10.1038/s41467-019-12626-3
|
75. |
H. Yaghoobnejad Asl, A. Manthiram, Proton-induced disproportionation of jahn-teller-active transition-metal ions in oxides due to electronically driven lattice instability. J. Am. Chem. Soc. 142, 21122-21130 ( 2020). https://doi.org/10.1021/jacs.0c10044
|
76. |
W. Li, Review—an unpredictable hazard in lithium-ion batteries from transition metal ions: dissolution from cathodes, deposition on anodes and elimination strategies. J. Electrochem. Soc. 167, 090514 ( 2020). https://doi.org/10.1149/1945-7111/ab847f
|
77. |
Z. Zhao, W. Zhang, M. Liu, S.J. Yoo, N. Yue et al., Ultrafast nucleation reverses dissolution of transition metal ions for robust aqueous batteries. Nano Lett. 23(11), 5307-5316 ( 2023). https://doi.org/10.1021/acs.nanolett.3c01435
|
78. |
C. Zhan, T. Wu, J. Lu, K. Amine, Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes-a critical review. Energy Environ. Sci. 11, 243-257 ( 2018). https://doi.org/10.1039/C7EE03122J
|
79. |
|
80. |
J. Agrisuelas, J.J. García-Jareño, D. Gimenez-Romero, F. Vicente, Insights on the mechanism of insoluble-to-soluble Prussian blue transformation. J. Electrochem. Soc. 156, P149 ( 2009). https://doi.org/10.1149/1.3177258
|
81. |
|
82. |
|
83. |
F. Wang, W. Sun, Z. Shadike, E. Hu, X. Ji et al., How water accelerates bivalent ion diffusion at the electrolyte/electrode interface. Angew. Chem. Int. Ed. 57, 11978-11981 ( 2018). https://doi.org/10.1002/anie.201806748
|
84. |
J. Yue, L. Lin, L. Jiang, Q. Zhang, Y. Tong et al., Interface concentrated-confinement suppressing cathode dissolution in water-in-salt electrolyte. Adv. Energy Mater. 10, 2000665 ( 2020). https://doi.org/10.1002/aenm.202000665
|
85. |
|
86. |
|
87. |
|
88. |
Z. Caixiang, J. Hao, J. Zhou, X. Yu, B. Lu, Interlayer-engineering and surface-substituting manganese-based self-evolution for high-performance potassium cathode. Adv. Energy Mater. 13, 2203126 ( 2023). https://doi.org/10.1002/aenm.202203126
|
89. |
B. Liu, Q. Zhang, U. Ali, Y. Li, Y. Hao et al., Solid-solution reaction suppresses the Jahn-Teller effect of potassium manganese hexacyanoferrate in potassium-ion batteries. Chem. Sci. 13, 10846-10855 ( 2022). https://doi.org/10.1039/d2sc03824b
|
90. |
F.D. Speck, A. Zagalskaya, V. Alexandrov, S. Cherevko, Periodicity in the electrochemical dissolution of transition metals. Angew. Chem. Int. Ed. 60, 13343-13349 ( 2021). https://doi.org/10.1002/anie.202100337
|
91. |
T. Zhang, Y. Tang, S. Guo, X. Cao, A. Pan et al., Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy Environ. Sci. 13, 4625-4665 ( 2020). https://doi.org/10.1039/D0EE02620D
|
92. |
|
93. |
K. Nakamoto, R. Sakamoto, M. Ito, A. Kitajou, S. Okada, Effect of concentrated electrolyte on aqueous sodium-ion battery with sodium manganese hexacyanoferrate cathode. Electrochemistry 85, 179-185 ( 2017). https://doi.org/10.5796/electrochemistry.85.179
|
94. |
|
95. |
J. Han, H. Zhang, A. Varzi, S. Passerini, Fluorine-free water-in-salt electrolyte for green and low-cost aqueous sodium-ion batteries. ChemSusChem 11, 3704-3707 ( 2018). https://doi.org/10.1002/cssc.201801930
|
96. |
L. Jiang, L. Liu, J. Yue, Q. Zhang, A. Zhou et al., High-voltage aqueous Na-ion battery enabled by inert-cation-assisted water-in-salt electrolyte. Adv. Mater. 32, e1904427 ( 2020). https://doi.org/10.1002/adma.201904427
|
97. |
Z. Hou, X. Zhang, X. Li, Y. Zhu, J. Liang et al., Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. J. Mater. Chem. A 5, 730-738 ( 2017). https://doi.org/10.1039/C6TA08736A
|
98. |
Z. Liang, F. Tian, G. Yang, C. Wang, Enabling long-cycling aqueous sodium-ion batteries via Mn dissolution inhibition using sodium ferrocyanide electrolyte additive. Nat. Commun. 14, 3591 ( 2023). https://doi.org/10.1038/s41467-023-39385-6
|
99. |
J. Chen, S. Lei, S. Zhang, C. Zhu, Q. Liu et al., Dilute aqueous hybrid electrolyte with regulated core-shell-solvation structure endows safe and low-cost potassium-ion energy storage devices. Adv. Funct. Mater. 33, 2215027 ( 2023). https://doi.org/10.1002/adfm.202215027
|
100. |
D. Zhang, L. Sun, C. Wang, Q. Xue, J. Feng et al., An open-framework structured material: [Ni(en) 2] 3[Fe(CN) 6] 2 as a cathode material for aqueous sodium- and potassium-ion batteries. ACS Appl. Mater. Interfaces 14, 16197-16203 ( 2022). https://doi.org/10.1021/acsami.2c00143
|
101. |
J. Chen, C. Liu, Z. Yu, J. Qu, C. Wang et al., High-energy-density aqueous sodium-ion batteries enabled by chromium hexacycnochromate anodes. Chem. Eng. J. 415, 129003 ( 2021). https://doi.org/10.1016/j.cej.2021.129003
|
102. |
J.-H. Lee, G. Ali, D.H. Kim, K.Y. Chung, Metal-organic framework cathodes based on a vanadium hexacyanoferrate Prussian blue analogue for high-performance aqueous rechargeable batteries. Adv. Energy Mater. 7, 1601491 ( 2017). https://doi.org/10.1002/aenm.201601491
|
103. |
J. Xie, L. Ma, J. Li, X. Yin, Z. Wen et al., Self-healing of Prussian blue analogues with electrochemically driven morphological rejuvenation. Adv. Mater. 34, e2205625 ( 2022). https://doi.org/10.1002/adma.202205625
|
104. |
U. Ali, B. Liu, H. Jia, Y. Li, Y. Li et al., In situ Fe-substituted hexacyanoferrate for high-performance aqueous potassium ion batteries. Small ( 2023). https://doi.org/10.1002/smll.202305866
|
105. |
M.A. Oliver-Tolentino, J. Vázquez-Samperio, S.N. Arellano-Ahumada, A. Guzmán-Vargas, D. Ramírez-Rosales et al., Enhancement of stability by positive disruptive effect on Mn-Fe charge transfer in vacancy-free Mn-co hexacyanoferrate through a charge/discharge process in aqueous Na-ion batteries. J. Phys. Chem. C 122, 20602-20610 ( 2018). https://doi.org/10.1021/acs.jpcc.8b05506
|
106. |
Y. Ma, Y. Ma, S.L. Dreyer, Q. Wang, K. Wang et al., High-entropy metal-organic frameworks for highly reversible sodium storage. Adv. Mater. 33, 2101342 ( 2021). https://doi.org/10.1002/adma.202101342
|
107. |
M. Du, P. Geng, C. Pei, X. Jiang, Y. Shan et al., High-entropy Prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries. Angew. Chem. Int. Ed. 61, e202209350 ( 2022). https://doi.org/10.1002/anie.202209350
|
108. |
J. Xing, Y. Zhang, Y. Jin, Q. Jin, Active cation-integration high-entropy Prussian blue analogues cathodes for efficient Zn storage. Nano Res. 16, 2486-2494 ( 2023). https://doi.org/10.1007/s12274-022-5020-0
|
109. |
X. Zhao, Z. Xing, C. Huang, Investigation of high-entropy Prussian blue analog as cathode material for aqueous sodium-ion batteries. J. Mater. Chem. A 11, 22835-22844 ( 2023). https://doi.org/10.1039/D3TA04349E
|
110. |
B. Wenger, P.K. Nayak, X. Wen, S.V. Kesava, N.K. Noel et al., Consolidation of the optoelectronic properties of CH 3NH 3PbBr 3 perovskite single crystals. Nat. Commun. 8, 590 ( 2017). https://doi.org/10.1038/s41467-017-00567-8
|
111. |
M. Xue, Y. Wang, X. Wang, X. Huang, J. Ji, Single-crystal-conjugated polymers with extremely high electron sensitivity through template-assisted in situ polymerization. Adv. Mater. 27, 5923-5929 ( 2015). https://doi.org/10.1002/adma.201502511
|
112. |
|
113. |
|
114. |
X. Wu, C. Wu, C. Wei, L. Hu, J. Qian et al., Highly crystallized Na 2CoFe(CN) 6 with suppressed lattice defects as superior cathode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 8, 5393-5399 ( 2016). https://doi.org/10.1021/acsami.5b12620
|
115. |
D. Cai, X. Yang, B. Qu, T. Wang, Comparison of the electrochemical performance of iron hexacyanoferrate with high and low quality as cathode materials for aqueous sodium-ion batteries. Chem. Commun. 53, 6780-6783 ( 2017). https://doi.org/10.1039/C7CC02516E
|
116. |
C. Li, X. Wang, W. Deng, C. Liu, J. Chen et al., Size engineering and crystallinity control enable high-capacity aqueous potassium-ion storage of Prussian white analogues. ChemElectroChem 5, 3887-3892 ( 2018). https://doi.org/10.1002/celc.201801277
|
117. |
W. Zhang, L. Xia, C. Shi, R. Qi, M. Hu, Casting and recycling of insoluble, labile single-crystal coordination polymer through reversible solid-liquid-solid transition. Matter 6, 3394-3412 ( 2023). https://doi.org/10.1016/j.matt.2023.05.024
|
118. |
|
119. |
M. Wan, R. Zeng, J. Meng, Z. Cheng, W. Chen et al., Post-synthetic and in situ vacancy repairing of iron hexacyanoferrate toward highly stable cathodes for sodium-ion batteries. Nano-Micro Lett. 14, 9 ( 2021). https://doi.org/10.1007/s40820-021-00742-z
|
120. |
F. Peng, L. Yu, S. Yuan, X.-Z. Liao, J. Wen et al., Enhanced electrochemical performance of sodium manganese ferrocyanide by Na 3(VOPO 4) 2F coating for sodium-ion batteries. ACS Appl. Mater. Interfaces 11, 37685-37692 ( 2019). https://doi.org/10.1021/acsami.9b12041
|
121. |
F. Feng, S. Chen, S. Zhao, W. Zhang, Y. Miao et al., Enhanced electrochemical performance of MnFe@NiFe Prussian blue analogue benefited from the inhibition of Mn ions dissolution for sodium-ion batteries. Chem. Eng. J. 411, 128518 ( 2021). https://doi.org/10.1016/j.cej.2021.128518
|
122. |
C. Xu, Y. Ma, J. Zhao, P. Zhang, Z. Chen et al., Surface engineering stabilizes rhombohedral sodium manganese hexacyanoferrates for high-energy Na-ion batteries. Angew. Chem. Int. Ed. 62, e202217761 ( 2023). https://doi.org/10.1002/anie.202217761
|
123. |
M. Lucero, D.B. Armitage, X. Yang, S.K. Sandstrom, M. Lyons et al., Ball milling-enabled Fe 2.4+ to Fe 3+ redox reaction in Prussian blue materials for long-life aqueous sodium-ion batteries. ACS Appl. Mater. Interfaces 15, 36366-36372 ( 2023). https://doi.org/10.1021/acsami.3c07304
|
124. |
E. Nossol, V.H.R. Souza, A.J.G. Zarbin, Carbon nanotube/Prussian blue thin films as cathodes for flexible, transparent and ITO-free potassium secondary battery. J. Colloid Interface Sci. 478, 107-116 ( 2016). https://doi.org/10.1016/j.jcis.2016.05.056
|
125. |
M. Morant-Giner, R. Sanchis-Gual, J. Romero, A. Alberola, L. García-Cruz et al., Prussian Blue@MoS 2 layer composites as highly efficient cathodes for sodium-and potassium-ion batteries. Adv. Funct. Mater. 28, 1706125 ( 2018). https://doi.org/10.1002/adfm.201706125
|
126. |
M. Zhang, T. Dong, D. Li, K. Wang, X. Wei et al., High-performance aqueous sodium-ion battery based on graphene-doped Na 2MnFe(CN) 6-zinc with a highly stable discharge platform and wide electrochemical stability. Energy Fuels 35, 10860-10868 ( 2021). https://doi.org/10.1021/acs.energyfuels.1c01095
|
127. |
C.D. Wessells, S.V. Peddada, R.A. Huggins, Y. Cui, Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett. 11, 5421-5425 ( 2011). https://doi.org/10.1021/nl203193q
|
128. |
|
129. |
T.Y. Pan, C.Y. Ruqia, C.S. Wu, S.G. Ni et al., Improvement in cycling stability of Prussian blue analog-based aqueous sodium-ion batteries by ligand substitution and electrolyte optimization. Electrochim. Acta 427, 140778 ( 2022). https://doi.org/10.1016/j.electacta.2022.140778
|
130. |
J. Liu, C. Yang, B. Wen, B. Li, Y. Liu, Ultra-long cycle of Prussian blue analogs achieved by equilibrium electrolyte for aqueous sodium-ion batteries. Small 19, e2303896 ( 2023). https://doi.org/10.1002/smll.202303896
|
131. |
S. Husmann, A.J.G. Zarbin, R.A.W. Dryfe, High-performance aqueous rechargeable potassium batteries prepared via interfacial synthesis of a Prussian blue-carbon nanotube composite. Electrochim. Acta 349, 136243 ( 2020). https://doi.org/10.1016/j.electacta.2020.136243
|