1. |
M. Kermani, S. Fallah Jokandan, M. Aghaei, F. Bahrami Asl, S. Karimzadeh et al., Estimation of the number of excess hospitalizations attributed to sulfur dioxide in six major cities of Iran. Health Scope 5, e38736 ( 2016). https://doi.org/10.17795/jhealthscope-38736
|
2. |
|
3. |
G. Goudarzi, S. Geravandi, E. Idani, S. Ahmad Hosseini, M.M. Baneshi et al., An evaluation of hospital admission respiratory disease attributed to sulfur dioxide ambient concentration in Ahvaz from 2011 through 2013. Environ. Sci. Pollut. Res. Int. 23, 22001-22007 ( 2016). https://doi.org/10.1007/s11356-016-7447-x
|
4. |
|
5. |
T. Shaymurat, Q. Tang, Y. Tong, L. Dong, Y. Liu, Gas dielectric transistor of CuPc single crystalline nanowire for SO 2 detection down to sub-ppm levels at room temperature. Adv. Mater. 25(2269-2273), 2376 ( 2013). https://doi.org/10.1002/adma.201204509
|
6. |
Z. Zhai, X. Zhang, J. Wang, H. Li, Y. Sun et al., Washable and flexible gas sensor based on UiO-66-NH 2 nanofibers membrane for highly detecting SO 2. Chem. Eng. J. 428, 131720 ( 2022). https://doi.org/10.1016/j.cej.2021.131720
|
7. |
M. Balaish, J.L.M. Rupp, Widening the range of trackable environmental and health pollutants for Li-garnet-based sensors. Adv. Mater. 33, e2100314 ( 2021). https://doi.org/10.1002/adma.202100314
|
8. |
|
9. |
A.V. Agrawal, N. Kumar, M. Kumar, Strategy and future prospects to develop room-temperature-recoverable NO 2 gas sensor based on two-dimensional molybdenum disulfide. Nano-Micro Lett. 13, 38 ( 2021). https://doi.org/10.1007/s40820-020-00558-3
|
10. |
P.K. Kannan, D.J. Late, H. Morgan, C.S. Rout, Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale 7, 13293-13312 ( 2015). https://doi.org/10.1039/C5NR03633J
|
11. |
|
12. |
D. Zhang, J. Wu, P. Li, Y. Cao, Room-temperature SO 2 gas-sensing properties based on a metal-doped MoS 2 nanoflower: an experimental and density functional theory investigation. J. Mater. Chem. A 5, 20666-20677 ( 2017). https://doi.org/10.1039/C7TA07001B
|
13. |
Z. Xue, M. Yan, X. Wang, Z. Wang, Y. Zhang et al., Tailoring unsymmetrical-coordinated atomic site in oxide-supported Pt catalysts for enhanced surface activity and stability. Small 17, e2101008 ( 2021). https://doi.org/10.1002/smll.202101008
|
14. |
L. Liu, P. Zhou, X. Su, Y. Liu, Y. Sun et al., Synergistic Ni single atoms and oxygen vacancies on SnO 2 nanorods toward promoting SO 2 gas sensing. Sens. Actuat. B Chem. 351, 130983 ( 2022). https://doi.org/10.1016/j.snb.2021.130983
|
15. |
Z. Li, E. Tian, S. Wang, M. Ye, S. Li et al., Single-atom catalysts: promotors of highly sensitive and selective sensors. Chem. Soc. Rev. 52, 5088-5134 ( 2023). https://doi.org/10.1039/d2cs00191h
|
16. |
M. Yan, X. Gao, X. Han, D. Zhou, Y. Lin et al., Harvesting the gas molecules by bioinspired design of 1D/2D hybrids toward sensitive acetone detecting. Small Struct. 4, 2200248 ( 2023). https://doi.org/10.1002/sstr.202200248
|
17. |
|
18. |
N. Luo, H. Cai, B. Lu, Z. Xue, J. Xu, Pt-functionalized amorphous RuO x as excellent stability and high-activity catalysts for low temperature MEMS sensors. Small 19, e2300006 ( 2023). https://doi.org/10.1002/smll.202300006
|
19. |
H. Cai, N. Luo, X. Wang, M. Guo, X. Li et al., Kinetics-driven dual hydrogen spillover effects for ultrasensitive hydrogen sensing. Small 19, e2302652 ( 2023). https://doi.org/10.1002/smll.202302652
|
20. |
W.-T. Koo, Y. Kim, S. Kim, B.L. Suh, S. Savagatrup et al., Hydrogen sensors from composites of ultra-small bimetallic nanoparticles and porous ion-exchange polymers. Chem 6, 2746-2758 ( 2020). https://doi.org/10.1016/j.chempr.2020.07.015
|
21. |
|
22. |
|
23. |
H. Shin, W.-G. Jung, D.-H. Kim, J.-S. Jang, Y.H. Kim et al., Single-atom Pt stabilized on one-dimensional nanostructure support via carbon nitride/SnO 2 heterojunction trapping. ACS Nano 14, 11394 ( 2020). https://doi.org/10.1021/acsnano.0c03687
|
24. |
J. Qiu, X. Hu, L. Shi, J. Fan, X. Min et al., Enabling selective, room-temperature gas detection using atomically dispersed Zn. Sens. Actuators B Chem. 329, 129221 ( 2021). https://doi.org/10.1016/j.snb.2020.129221
|
25. |
F. Gu, Y. Cui, D. Han, S. Hong, M. Flytzani-Stephanopoulos et al., Atomically dispersed Pt(II) on WO 3 for highly selective sensing and catalytic oxidation of triethylamine. Appl. Catal. B Environ. 256, 117809 ( 2019). https://doi.org/10.1016/j.apcatb.2019.117809
|
26. |
Z. Xue, C. Wang, Y. Tong, M. Yan, J. Zhang et al., Strain-assisted single Pt sites on high-curvature MoS2 surface for ultrasensitive H2S sensing. CCS Chem. 4, 3842 (2022)
|
27. |
Z. Pei, H. Zhang, Z.-P. Wu, X.F. Lu, D. Luan et al., Atomically dispersed Ni activates adjacent Ce sites for enhanced electrocatalytic oxygen evolution activity. Sci. Adv. 9, eadh1320 ( 2023). https://doi.org/10.1126/sciadv.adh1320
|
28. |
S. Zhuo, Y. Xu, W. Zhao, J. Zhang, B. Zhang, Hierarchical nanosheet-based MoS 2 nanotubes fabricated by an anion-exchange reaction of MoO 3-amine hybrid nanowires. Angew. Chem. Int. Ed. 52, 8602 ( 2013). https://doi.org/10.1002/anie.201303480
|
29. |
X. Bai, X. Wang, T. Jia, L. Guo, D. Hao et al., Efficient degradation of PPCPs by Mo 1-xS 2-y with S vacancy at phase-junction: promoted by innergenerate-H 2O 2. Appl. Catal. B Environ. 310, 121302 ( 2022). https://doi.org/10.1016/j.apcatb.2022.121302
|
30. |
S. Liu, Y. Yin, M. Wu, K.S. Hui, K.N. Hui et al., Phosphorus-mediated MoS 2 nanowires as a high-performance electrode material for quasi-solid-state sodium-ion intercalation supercapacitors. Small 15, 1803984 ( 2019). https://doi.org/10.1002/smll.201803984
|
31. |
H. Xu, J. Li, P. Li, J. Shi, X. Gao et al., Highly efficient SO 2 sensing by light-assisted Ag/PANI/SnO 2 at room temperature and the sensing mechanism. ACS Appl. Mater. Interfaces 13, 49194 ( 2021). https://doi.org/10.1021/acsami.1c14548
|
32. |
D. Kim, S. Chong, C. Park, J. Ahn, J. Jang et al., Oxide/ZIF-8 hybrid nanofiber yarns: heightened surface activity for exceptional chemiresistive sensing. Adv. Mater. 34, 2105869 ( 2022). https://doi.org/10.1002/adma.202105869
|
33. |
Z. Shen, M. Cao, Y. Wen, J. Li, X. Zhang et al., Tuning the local coordination of CoP 1-x S x between NiAs- and MnP-type structures to catalyze lithium-sulfur batteries. ACS Nano 17, 3143 ( 2023). https://doi.org/10.1021/acsnano.2c12436
|
34. |
Y. Men, X. Su, P. Li, Y. Tan, C. Ge et al., Oxygen-inserted top-surface layers of Ni for boosting alkaline hydrogen oxidation electrocatalysis. J. Am. Chem. Soc. 144, 12661 ( 2022). https://doi.org/10.1021/jacs.2c01448
|
35. |
|
36. |
|
37. |
H. Yin, Y. Cao, B. Marelli, X. Zeng, A.J. Mason et al., Soil sensors and plant wearables for smart and precision agriculture. Adv. Mater. 33, 2007764 ( 2021). https://doi.org/10.1002/adma.202007764
|
38. |
Z. Li, Y. Liu, O. Hossain, R. Paul, S. Yao et al., Real-time monitoring of plant stresses via chemiresistive profiling of leaf volatiles by a wearable sensor. Matter 4, 2553 ( 2021). https://doi.org/10.1016/j.matt.2021.06.009
|