1. |
S. He, X. Sun, H. Zhang, C. Yuan, Y. Wei et al., Preparation strategies and applications of MXene-polymer composites: a review. Macromol. Rapid Commun. 42, e2100324 ( 2021). https://doi.org/10.1002/marc.202100324
|
2. |
S. Seyedin, S. Uzun, A. Levitt, B. Anasori, G. Dion et al., MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles. Adv. Funct. Mater. 30, 1910504 ( 2020). https://doi.org/10.1002/adfm.201910504
|
3. |
X. Qu, S. Wang, Y. Zhao, H. Huang, Q. Wang et al., Skin-inspired highly stretchable, tough and adhesive hydrogels for tissue-attached sensor. Chem. Eng. J. 425, 131523 ( 2021). https://doi.org/10.1016/j.cej.2021.131523
|
4. |
R. Liu, J. Li, M. Li, Q. Zhang, G. Shi et al., MXene-coated air-permeable pressure-sensing fabric for smart wear. ACS Appl. Mater. Interfaces 12, 46446-46454 ( 2020). https://doi.org/10.1021/acsami.0c11715
|
5. |
X. Sun, K. Shao, T. Wang, Detection of volatile organic compounds (VOCs) from exhaled breath as noninvasive methods for cancer diagnosis. Anal. Bioanal. Chem. 408, 2759-2780 ( 2016). https://doi.org/10.1007/s00216-015-9200-6
|
6. |
|
7. |
W. Huang, J. Zhu, M. Wang, L. Hu, Y. Tang et al., Emerging mono-elemental bismuth nanostructures: controlled synthesis and their versatile applications. Adv. Funct. Mater. 31, 2007584 ( 2021). https://doi.org/10.1002/adfm.202007584
|
8. |
W. Huang, M. Wang, L. Hu, C. Wang, Z. Xie et al., Recent advances in semiconducting monoelemental selenium nanostructures for device applications. Adv. Funct. Mater. 30, 2003301 ( 2020). https://doi.org/10.1002/adfm.202003301
|
9. |
X. Chen, L. Kong, J.A. Mehrez, C. Fan, W. Quan et al., Outstanding humidity chemiresistors based on imine-linked covalent organic framework films for human respiration monitoring. Nano-Micro Lett. 15, 149 ( 2023). https://doi.org/10.1007/s40820-023-01107-4
|
10. |
B. Zhou, J. Liu, X. Huang, X. Qiu, X. Yang et al., Mechanoluminescent-triboelectric bimodal sensors for self-powered sensing and intelligent control. Nano-Micro Lett. 15, 72 ( 2023). https://doi.org/10.1007/s40820-023-01054-0
|
11. |
|
12. |
|
13. |
|
14. |
Q. An, S. Gan, J. Xu, Y. Bao, T. Wu et al., A multichannel electrochemical all-solid-state wearable potentiometric sensor for real-time sweat ion monitoring. Electrochem. Commun. 107, 106553 ( 2019). https://doi.org/10.1016/j.elecom.2019.106553
|
15. |
|
16. |
H.-C. Jung, J.-H. Moon, D.-H. Baek, J.-H. Lee, Y.-Y. Choi et al., CNT/PDMS composite flexible dry electrodesfor long-term ECG monitoring. IEEE Trans. Biomed. Eng. 59, 1472-1479 ( 2012). https://doi.org/10.1109/TBME.2012.2190288
|
17. |
C. Pang, G.-Y. Lee, T.-I. Kim, S.M. Kim, H.N. Kim et al., A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 11, 795-801 ( 2012). https://doi.org/10.1038/nmat3380
|
18. |
C.M. Boutry, L. Beker, Y. Kaizawa, C. Vassos, H. Tran et al., Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3, 47-57 ( 2019). https://doi.org/10.1038/s41551-018-0336-5
|
19. |
|
20. |
|
21. |
S. Ganguly, P. Das, P.P. Maity, S. Mondal, S. Ghosh et al., Green reduced graphene oxide toughened semi-IPN monolith hydrogel as dual responsive drug release system: rheological, physicomechanical, and electrical evaluations. J. Phys. Chem. B 122, 7201-7218 ( 2018). https://doi.org/10.1021/acs.jpcb.8b02919
|
22. |
P. Das, S. Ganguly, S.R. Ahmed, M. Sherazee, S. Margel et al., Carbon dot biopolymer-based flexible functional films for antioxidant and food monitoring applications. ACS Appl. Polym. Mater. 4, 9323-9340 ( 2022). https://doi.org/10.1021/acsapm.2c01579
|
23. |
S. Mondal, S. Ghosh, S. Ganguly, P. Das, R. Ravindren et al., Highly conductive and flexible nano-structured carbon-based polymer nanocomposites with improved electromagnetic-interference-shielding performance. Mater. Res. Express 4, 105039 ( 2017). https://doi.org/10.1088/2053-1591/aa9032
|
24. |
S.R. Ahmed, M. Sherazee, P. Das, J. Dondapati, S. Srinivasan et al., Borophene quantum dots with enhanced nanozymatic activity for the detection of H 2O 2 and cardiac biomarkers. ACS Appl. Nano Mater. 6, 19939-19946 ( 2023). https://doi.org/10.1021/acsanm.3c03745
|
25. |
L. Sheng, Y. Liang, L. Jiang, Q. Wang, T. Wei et al., Bubble-decorated honeycomb-like graphene film as ultrahigh sensitivity pressure sensors. Adv. Funct. Mater. 25, 6545-6551 ( 2015). https://doi.org/10.1002/adfm.201502960
|
26. |
P. Das, S. Ganguly, I. Perelshtein, S. Margel, A. Gedanken, Acoustic green synthesis of graphene- Gallium nanoparticles and PEDOT: PSS hybrid coating for textile to mitigate electromagnetic radiation pollution. ACS Appl. Nano Mater. 5, 1644-1655 ( 2022). https://doi.org/10.1021/acsanm.1c04425
|
27. |
S. Mondal, S. Ganguly, P. Das, P. Bhawal, T.K. Das et al., High-performance carbon nanofiber coated cellulose filter paper for electromagnetic interference shielding. Cellulose 24, 5117-5131 ( 2017). https://doi.org/10.1007/s10570-017-1441-4
|
28. |
|
29. |
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992-1005 ( 2014). https://doi.org/10.1002/adma.201304138
|
30. |
J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72-133 ( 2019). https://doi.org/10.1039/C8CS00324F
|
31. |
|
32. |
J. Zhu, S. Wei, J. Tang, Y. Hu, X. Dai et al., MXene V 2CT x nanosheet/bismuth quantum dot-based heterostructures for enhanced flexible photodetection and nonlinear photonics. ACS Appl. Nano Mater. 6, 13629-13636 ( 2023). https://doi.org/10.1021/acsanm.3c02317
|
33. |
|
34. |
C. Wang, J. Xu, Y. Wang, Y. Song, J. Guo et al., MXene (Ti 2NTx): synthesis, characteristics and application as a thermo-optical switcher for all-optical wavelength tuning laser. Sci. China Mater. 64, 259-265 ( 2021). https://doi.org/10.1007/s40843-020-1409-7
|
35. |
S. Ganguly, P. Das, A. Saha, M. Noked, A. Gedanken et al., Mussel-inspired polynorepinephrine/MXene-based magnetic nanohybrid for electromagnetic interference shielding in X-band and strain-sensing performance. Langmuir 38, 3936-3950 ( 2022). https://doi.org/10.1021/acs.langmuir.2c00278
|
36. |
P. Das, S. Ganguly, A. Rosenkranz, B. Wang, J. Yu et al., MXene/0D nanocomposite architectures: design, properties and emerging applications. Mater. Today Nano 24, 100428 ( 2023). https://doi.org/10.1016/j.mtnano.2023.100428
|
37. |
C.J. Zhang, B. Anasori, A. Seral-Ascaso, S.H. Park, N. McEvoy et al., Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29, 1702678 ( 2017). https://doi.org/10.1002/adma.201702678
|
38. |
M.R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 ( 2017). https://doi.org/10.1038/nenergy.2017.105
|
39. |
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti 3AlC 2. Adv. Mater. 23, 4248-4253 ( 2011). https://doi.org/10.1002/adma.201102306
|
40. |
Z. Li, Y. Cui, Z. Wu, C. Milligan, L. Zhou et al., Reactive metal-support interactions at moderate temperature in two-dimensional niobium-carbide-supported platinum catalysts. Nat. Catal. 1, 349-355 ( 2018). https://doi.org/10.1038/s41929-018-0067-8
|
41. |
S.J. Kim, H.-J. Koh, C.E. Ren, O. Kwon, K. Maleski et al., Metallic Ti 3C 2T x MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12, 986-993 ( 2018). https://doi.org/10.1021/acsnano.7b07460
|
42. |
A. Sarycheva, A. Polemi, Y. Liu, K. Dandekar, B. Anasori, Y. Gogotsi, 2d titanium carbide (MXene) for wireless communication. Sci. Adv. 4, Eaau0920 ( 2018). https://doi.org/10.1126/sciadv.aau0920
|
43. |
N. Driscoll, A.G. Richardson, K. Maleski, B. Anasori, O. Adewole et al., Two-dimensional Ti 3C 2 MXene for high-resolution neural interfaces. ACS Nano 12, 10419-10429 ( 2018). https://doi.org/10.1021/acsnano.8b06014
|
44. |
P. Das, S. Srinivasan, A.R. Rajabzadeh, Electromagnetic interference shielding behavior of MXenes, in MXene Nanocomposites (CRC Press, Boca Raton, 2023), pp. 137-152. https://doi.org/10.1201/9781003281511-7
|
45. |
W. Huang, L. Hu, Y. Tang, Z. Xie, H. Zhang, Recent advances in functional 2D MXene-based nanostructures for next-generation devices. Adv. Funct. Mater. 30, 2005223 ( 2020). https://doi.org/10.1002/adfm.202005223
|
46. |
Q. Yang, Y. Wang, X. Li, H. Li, Z. Wang et al., Recent progress of MXene-based nanomaterials in flexible energy storage and electronic devices. Energy Environ. Mater. 1, 183-195 ( 2018). https://doi.org/10.1002/eem2.12023
|
47. |
X. Zhan, C. Si, J. Zhou, Z. Sun, MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz. 5, 235-258 ( 2020). https://doi.org/10.1039/C9NH00571D
|
48. |
|
49. |
|
50. |
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137-1140 ( 2013). https://doi.org/10.1126/science.aag2421
|
51. |
W. He, M. Sohn, R. Ma, D.J. Kang, Flexible single-electrode triboelectric nanogenerators with MXene/PDMS composite film for biomechanical motion sensors. Nano Energy 78, 105383 ( 2020). https://doi.org/10.1016/j.nanoen.2020.105383
|
52. |
H. Cheng, Y. Pan, Q. Chen, R. Che, G. Zheng et al., Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv. Compos. Hybrid Mater. 4, 505-513 ( 2021). https://doi.org/10.1007/s42114-021-00224-1
|
53. |
S. Ganguly, N. Kanovsky, P. Das, A. Gedanken, S. Margel, Photopolymerized thin coating of polypyrrole/graphene nanofiber/iron oxide onto nonpolar plastic for flexible electromagnetic radiation shielding, strain sensing, and non-contact heating applications. Adv. Mater. Interfaces 8, 2101255 ( 2021). https://doi.org/10.1002/admi.202101255
|
54. |
S. Seyedin, J.M. Razal, P.C. Innis, A. Jeiranikhameneh, S. Beirne et al., Knitted strain sensor textiles of highly conductive all-polymeric fibers. ACS Appl. Mater. Interfaces 7, 21150-21158 ( 2015). https://doi.org/10.1021/acsami.5b04892
|
55. |
S. Seyedin, J.M. Razal, P.C. Innis, G.G. Wallace, A facile approach to spinning multifunctional conductive elastomer fibres with nanocarbon fillers. Smart Mater. Struct. 25, 035015 ( 2016). https://doi.org/10.1088/0964-1726/25/3/035015
|
56. |
M.Z. Seyedin, J.M. Razal, P.C. Innis, R. Jalili, G.G. Wallace, Achieving outstanding mechanical performance in reinforced elastomeric composite fibers using large sheets of graphene oxide. Adv. Funct. Mater. 25, 94-104 ( 2015). https://doi.org/10.1002/adfm.201402167
|
57. |
S. Seyedin, J.M. Razal, P.C. Innis, R. Jalili, G.G. Wallace, Compositional effects of large graphene oxide sheets on the spinnability and properties of polyurethane composite fibers. Adv. Mater. Interfaces 3, 1500672 ( 2016). https://doi.org/10.1002/admi.201500672
|
58. |
S. Ghosh, S. Ganguly, P. Das, T.K. Das, M. Bose et al., Fabrication of reduced graphene oxide/silver nanoparticles decorated conductive cotton fabric for high performing electromagnetic interference shielding and antibacterial application. Fibres. Polym. 20, 1161-1171 ( 2019). https://doi.org/10.1007/s12221-019-1001-7
|
59. |
S. Ganguly, S. Mondal, P. Das, P. Bhawal, T.K. Das et al., An insight into the physico-mechanical signatures of silylated graphene oxide in poly(ethylene methyl acrylate) copolymeric thermoplastic matrix. Macromol. Res. 27, 268-281 ( 2019). https://doi.org/10.1007/s13233-019-7039-y
|
60. |
S. Ganguly, D. Ray, P. Das, P.P. Maity, S. Mondal et al., Mechanically robust dual responsive water dispersible-graphene based conductive elastomeric hydrogel for tunable pulsatile drug release. Ultrason. Sonochem. 42, 212-227 ( 2018). https://doi.org/10.1016/j.ultsonch.2017.11.028
|
61. |
S. Lee, S. Shin, S. Lee, J. Seo, J. Lee et al., Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv. Funct. Mater. 25, 3114-3121 ( 2015). https://doi.org/10.1002/adfm.201500628
|
62. |
Y. Lu, J. Jiang, S. Yoon, K.-S. Kim, J.-H. Kim et al., High-performance stretchable conductive composite fibers from surface-modified silver nanowires and thermoplastic polyurethane by wet spinning. ACS Appl. Mater. Interfaces 10, 2093-2104 ( 2018). https://doi.org/10.1021/acsami.7b16022
|
63. |
S. Ghosh, P. Das, S. Ganguly, S. Remanan, T.K. Das et al., 3D-enhanced, high-performing, super-hydrophobic and electromagnetic-interference shielding fabrics based on silver paint and their use in antibacterial applications. ChemistrySelect 4, 11748-11754 ( 2019). https://doi.org/10.1002/slct.201901738
|
64. |
S. Ganguly, P. Das, M. Bose, T.K. Das, S. Mondal et al., Sonochemical green reduction to prepare Ag nanoparticles decorated graphene sheets for catalytic performance and antibacterial application. Ultrason. Sonochem. 39, 577-588 ( 2017). https://doi.org/10.1016/j.ultsonch.2017.05.005
|
65. |
P. Das, M. Sherazee, P.K. Marvi, S.R. Ahmed, A. Gedanken et al., Waste-derived sustainable fluorescent nanocarbon-coated breathable functional fabric for antioxidant and antimicrobial applications. ACS Appl. Mater. Interfaces 15, 29425-29439 ( 2023). https://doi.org/10.1021/acsami.3c03778
|
66. |
P. Das, S. Ganguly, A. Saravanan, S. Margel, A. Gedanken et al., Naturally derived carbon dots in situ confined self-healing and breathable hydrogel monolith for anomalous diffusion-driven phytomedicine release. ACS Appl. Bio Mater. 5, 5617-5633 ( 2022). https://doi.org/10.1021/acsabm.2c00664
|
67. |
S. Ganguly, S. Ghosh, P. Das, T.K. Das, S.K. Ghosh et al., Poly(N-vinylpyrrolidone)-stabilized colloidal graphene-reinforced poly(ethylene-co-methyl acrylate) to mitigate electromagnetic radiation pollution. Polym. Bull. 77, 2923-2943 ( 2020). https://doi.org/10.1007/s00289-019-02892-y
|
68. |
S. Ganguly, P. Bhawal, A. Choudhury, S. Mondal, P. Das et al., Preparation and properties of halloysite nanotubes/poly(ethylene methyl acrylate)-based nanocomposites by variation of mixing methods. Polym. Plast. Technol. Eng. 57, 997-1014 ( 2018). https://doi.org/10.1080/03602559.2017.1370106
|
69. |
S. Seyedin, P. Zhang, M. Naebe, S. Qin, J. Chen et al., Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Mater. Horiz. 6, 219-249 ( 2019). https://doi.org/10.1039/C8MH01062E
|
70. |
M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, S. Yunoki, Electronic properties and applications of MXenes: a theoretical review. J. Mater. Chem. C ( 2017). https://doi.org/10.1039/C7TC00140A
|
71. |
|
72. |
M. Liu, Y. Zhuo, A. Sarycheva, Y. Gogotsi, M.A. Bissett et al., Deformation of and interfacial stress transfer in Ti 3C 2 MXene-polymer composites. ACS Appl. Mater. Interfaces 14, 10681-10690 ( 2022). https://doi.org/10.1021/acsami.1c21611
|
73. |
C.B. Hatter, J. Shah, B. Anasori, Y. Gogotsi, Micromechanical response of two-dimensional transition metal carbonitride (MXene) reinforced epoxy composites. Compos. Part B Eng. 182, 107603 ( 2020). https://doi.org/10.1016/j.compositesb.2019.107603
|
74. |
|
75. |
H. Aghamohammadi, N. Amousa, R. Eslami-Farsani, Recent advances in developing the MXene/polymer nanocomposites with multiple properties: a review study. Synth. Met. 273, 116695 ( 2021). https://doi.org/10.1016/j.synthmet.2020.116695
|
76. |
V. Kumar, P. Yeole, A. Majed, C. Park, K. Li et al., MXene reinforced thermosetting composite for lightning strike protection of carbon fiber reinforced polymer. Adv. Mater. Interfaces 8, 2100803 ( 2021). https://doi.org/10.1002/admi.202100803
|
77. |
J.-H. Pu, X. Zhao, X.-J. Zha, L. Bai, K. Ke et al., Multilayer structured AgNW/WPU-MXene fiber strain sensors with ultrahigh sensitivity and a wide operating range for wearable monitoring and healthcare. J. Mater. Chem. A 7, 15913-15923 ( 2019). https://doi.org/10.1039/c9ta04352g
|
78. |
X.-P. Li, Y. Li, X. Li, D. Song, P. Min et al., Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets. J. Colloid Interface Sci. 542, 54-62 ( 2019). https://doi.org/10.1016/j.jcis.2019.01.123
|
79. |
M. Sajid, H.B. Kim, G.U. Siddiqui, K.H. Na, K.H. Choi, Linear bi-layer humidity sensor with tunable response using combinations of molybdenum carbide with polymers. Sens. Actuat. A Phys. 262, 68-77 ( 2017). https://doi.org/10.1016/j.sna.2017.05.029
|
80. |
F. Wang, C. Yang, M. Duan, Y. Tang, J. Zhu, TiO 2 nanoparticle modified organ-like Ti 3C 2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances. Biosens. Bioelectron. 74, 1022-1028 ( 2015). https://doi.org/10.1016/j.bios.2015.08.004
|
81. |
R.B. Rakhi, P. Nayak, C. Xia, H.N. Alshareef, Novel amperometric glucose biosensor based on MXene nanocomposite. Sci. Rep. 6, 36422 ( 2016). https://doi.org/10.1038/srep36422
|
82. |
Z. Ling, C.E. Ren, M.-Q. Zhao, J. Yang, J.M. Giammarco et al., Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. U.S.A. 111, 16676-16681 ( 2014). https://doi.org/10.1073/pnas.1414215111
|
83. |
Y. Dong, S. Zheng, J. Qin, X. Zhao, H. Shi et al., All-MXene-based integrated electrode constructed by Ti 3C 2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries. ACS Nano 12, 2381-2388 ( 2018). https://doi.org/10.1021/acsnano.7b07672
|
84. |
X. Wu, B. Huang, R. Lv, Q. Wang, Y. Wang, Highly flexible and low capacitance loss supercapacitor electrode based on hybridizing decentralized conjugated polymer chains with MXene. Chem. Eng. J. 378, 122246 ( 2019). https://doi.org/10.1016/j.cej.2019.122246
|
85. |
K. Rasool, K.A. Mahmoud, D.J. Johnson, M. Helal, G.R. Berdiyorov et al., Efficient antibacterial membrane based on two-dimensional Ti 3C 2T x (MXene) nanosheets. Sci. Rep. 7, 1598 ( 2017). https://doi.org/10.1038/s41598-017-01714-3
|
86. |
X. Gao, Z.-K. Li, J. Xue, Y. Qian, L.-Z. Zhang et al., Titanium carbide Ti 3C 2T x (MXene) enhanced PAN nanofiber membrane for air purification. J. Membr. Sci. 586, 162-169 ( 2019). https://doi.org/10.1016/j.memsci.2019.05.058
|
87. |
X. Jia, B. Shen, L. Zhang, W. Zheng, Construction of compressible Polymer/MXene composite foams for high-performance absorption-dominated electromagnetic shielding with ultra-low reflectivity. Carbon 173, 932-940 ( 2021). https://doi.org/10.1016/j.carbon.2020.11.036
|
88. |
|
89. |
Y. Pan, L. Fu, Q. Zhou, Z. Wen, C.-T. Lin et al., Flammability, thermal stability and mechanical properties of polyvinyl alcohol nanocomposites reinforced with delaminated Ti 3C 2T x (MXene). Polym. Compos. 41, 210-218 ( 2020). https://doi.org/10.1002/pc.25361
|
90. |
S. Mazhar, A. Ali Qarni, Y. Ul Haq, Z. Ul Haq, I. Murtaza, Promising PVC/MXene based flexible thin film nanocomposites with excellent dielectric, thermal and mechanical properties. Ceram. Int. 46, 12593-12605 ( 2020). https://doi.org/10.1016/j.ceramint.2020.02.023
|
91. |
Y. Shi, C. Liu, L. Liu, L. Fu, B. Yu et al., Strengthening, toughing and thermally stable ultra-thin MXene nanosheets/polypropylene nanocomposites via nanoconfinement. Chem. Eng. J. 378, 122267 ( 2019). https://doi.org/10.1016/j.cej.2019.122267
|
92. |
|
93. |
H. Xu, X. Yin, X. Li, M. Li, S. Liang et al., Lightweight Ti 2CT x MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces 11, 10198-10207 ( 2019). https://doi.org/10.1021/acsami.8b21671
|
94. |
|
95. |
X. Wu, B. Han, H.-B. Zhang, X. Xie, T. Tu et al., Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 381, 122622 ( 2020). https://doi.org/10.1016/j.cej.2019.122622
|
96. |
X. Sheng, Y. Zhao, L. Zhang, X. Lu. Properties of two-dimensional Ti 3C 2 MXene/thermoplastic polyurethane nanocomposites with effective reinforcement via melt blending. Compos. Sci. Technol. 181, 107710 ( 2019). https://doi.org/10.1016/j.compscitech.2019.107710
|
97. |
J.-Q. Luo, S. Zhao, H.-B. Zhang, Z. Deng, L. Li et al., Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding. Compos. Sci. Technol. 182, 107754 ( 2019). https://doi.org/10.1016/j.compscitech.2019.107754
|
98. |
Y. Dong, C. Zhang, G. Zhao, Y. Guan, A. Gao et al., Constitutive equation and processing maps of an Al-Mg-Si aluminum alloy: determination and application in simulating extrusion process of complex profiles. Mater. Des. 92, 983-997 ( 2016). https://doi.org/10.1016/j.matdes.2015.12.113
|
99. |
R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao et al., Ultrathin biomimetic polymeric Ti 3C 2T x MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10, 44787-44795 ( 2018). https://doi.org/10.1021/acsami.8b18347
|
100. |
|
101. |
|
102. |
R. Alexander-Katz, Handbook of Polymer Synthesis, Characterization, and Processing (Wiley, 2013), pp.519-533
|
103. |
A. Kausar, Role of thermosetting polymer in structural composite. Am. J. Polym. Sci. Eng. 5(1), 1-12 (2017)
|
104. |
B. Suresha, G. Chandramohan, N.M. Renukappa, H. Siddaramaiah, Mechanical and tribological properties of glass-epoxy composites with and without graphite particulate filler. J. Appl. Polym. Sci. 103, 2472-2480 ( 2007). https://doi.org/10.1002/app.25413
|
105. |
|
106. |
|
107. |
|
108. |
S. Ganguly, P. Bhawal, R. Ravindren, N.C. Das, Polymer nanocomposites for electromagnetic interference shielding: a review. J. Nanosci. Nanotechnol. 18, 7641-7669 ( 2018). https://doi.org/10.1166/jnn.2018.15828
|
109. |
|
110. |
H. Zhang, L. Wang, A. Zhou, C. Shen, Y. Dai et al., Effects of 2-D transition metal carbide Ti 2CT x on properties of epoxy composites. RSC Adv. 6, 87341-87352 ( 2016). https://doi.org/10.1039/C6RA14560D
|
111. |
P. Song, H. Qiu, L. Wang, X. Liu, Y. Zhang et al., Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance. Sustain. Mater. Technol. 24, e00153 ( 2020). https://doi.org/10.1016/j.susmat.2020.e00153
|
112. |
L. Wang, H. Qiu, P. Song, Y. Zhang, Y. Lu et al., 3D Ti 3C 2T x MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties. Compos. Part A Appl. Sci. Manuf. 123, 293-300 ( 2019). https://doi.org/10.1016/j.compositesa.2019.05.030
|
113. |
L. Wang, P. Song, C.-T. Lin, J. Kong, J. Gu, 3D shapeable, superior electrically conductive cellulose nanofibers/Ti 3C 2T x MXene aerogels/epoxy nanocomposites for promising EMI shielding. Research 2020, 4093732 (2020). https://doi.org/10.34133/2020/4093732
|
114. |
L. Wang, L. Chen, P. Song, C. Liang, Y. Lu et al., Fabrication on the annealed Ti 3C 2T x MXene/Epoxy nanocomposites for electromagnetic interference shielding application. Compos. Part B Eng. 171, 111-118 ( 2019). https://doi.org/10.1016/j.compositesb.2019.04.050
|
115. |
Q. Li, X. Xu, J. Guo, J.P. Hill, H. Xu et al., Two-dimensional MXene-polymer heterostructure with ordered in-plane mesochannels for high-performance capacitive deionization. Angew. Chem. Int. Ed. 60, 26528-26534 ( 2021). https://doi.org/10.1002/anie.202111823
|
116. |
S. Wei, J. Ma, D. Wu, B. Chen, C. Du et al., Constructing flexible film electrode with porous layered structure by MXene/SWCNTs/PANI ternary composite for efficient low-grade thermal energy harvest. Adv. Funct. Mater. 33, 2209806 ( 2023). https://doi.org/10.1002/adfm.202209806
|
117. |
L. Zhao, L. Wang, Y. Zheng, S. Zhao, W. Wei et al., Highly-stable polymer-crosslinked 2D MXene-based flexible biocompatible electronic skins for in vivo biomonitoring. Nano Energy 84, 105921 ( 2021). https://doi.org/10.1016/j.nanoen.2021.105921
|
118. |
|
119. |
M. Qin, W. Yuan, X. Zhang, Y. Cheng, M. Xu et al., Preparation of PAA/PAM/MXene/TA hydrogel with antioxidant, healable ability as strain sensor. Colloids Surf. B Biointerfaces 214, 112482 ( 2022). https://doi.org/10.1016/j.colsurfb.2022.112482
|
120. |
Z. Liu, R. Zhang, H. Xiong, L. Zhang, J. Li et al., Swelling-induced structural transformation strategy: controllable synthesis of 2D porous polypyrrole/MXene heterostructures with tunable pore structures. Adv. Mater. Interfaces 10, 2202501 ( 2023). https://doi.org/10.1002/admi.202202501
|
121. |
Z. Qin, X. Chen, Y. Lv, B. Zhao, X. Fang et al., Wearable and high-performance piezoresistive sensor based on nanofiber/sodium alginate synergistically enhanced MXene composite aerogel. Chem. Eng. J. 451, 138586 ( 2023). https://doi.org/10.1016/j.cej.2022.138586
|
122. |
X. Wang, N. Li, J. Yin, X. Wang, L. Xu et al., Interface interaction-mediated design of tough and conductive MXene-composited polymer hydrogel with high stretchability and low hysteresis for high-performance multiple sensing. Sci. China Mater. 66, 272-283 ( 2023). https://doi.org/10.1007/s40843-022-2105-6
|
123. |
|
124. |
P. Das, S. Ganguly, A. Saha, M. Noked, S. Margel et al., Carbon-dots-initiated photopolymerization: an In situ synthetic approach for MXene/poly(norepinephrine)/copper hybrid and its application for mitigating water pollution. ACS Appl. Mater. Interfaces 13, 31038-31050 ( 2021). https://doi.org/10.1021/acsami.1c08111
|
125. |
P. Das, A. Rosenkranz, S. Ganguly, MXene Nanocomposites: Design, Fabrication, and Shielding Applications, 1st edn. (CRC Press, Boca Raton, 2023), p.18. https://doi.org/10.1201/9781003281511
|
126. |
|
127. |
|
128. |
X. Jin, J. Wang, L. Dai, X. Liu, L. Li et al., Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 380, 122475 ( 2020). https://doi.org/10.1016/j.cej.2019.122475
|
129. |
O.B. Seo, S. Saha, N.H. Kim, J.H. Lee, Preparation of functionalized MXene-stitched-graphene oxide/poly(ethylene-co-acrylic acid) nanocomposite with enhanced hydrogen gas barrier properties. J. Membr. Sci. 640, 119839 ( 2021). https://doi.org/10.1016/j.memsci.2021.119839
|
130. |
S. Tang, Z. Wu, X. Li, F. Xie, D. Ye et al., Nacre-inspired biodegradable nanocellulose/MXene/AgNPs films with high strength and superior gas barrier properties. Carbohydr. Polym. 299, 120204 ( 2023). https://doi.org/10.1016/j.carbpol.2022.120204
|
131. |
X. Wang, X. Li, L. Cui, Y. Liu, S. Fan, Improvement of gas barrier properties for biodegradable poly(butylene adipate-co-terephthalate) nanocomposites with MXene nanosheets via biaxial stretching. Polymers 14, 480 ( 2022). https://doi.org/10.3390/polym14030480
|
132. |
M. Kurtoglu, M. Naguib, Y. Gogotsi, M.W. Barsoum, First principles study of two-dimensional early transition metal carbides. MRS Commun. 2, 133-137 ( 2012). https://doi.org/10.1557/mrc.2012.25
|
133. |
|
134. |
M. Khazaei, M. Arai, T. Sasaki, C.-Y. Chung, N.S. Venkataramanan et al., Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 23, 2185-2192 ( 2013). https://doi.org/10.1002/adfm.201202502
|
135. |
R. Niu, R. Han, Y. Wang, L. Zhang, Q. Qiao et al., MXene-based porous and robust 2D/2D hybrid architectures with dispersed Li 3Ti 2(PO 4) 3 as superior anodes for lithium-ion battery. Chem. Eng. J. 405, 127049 ( 2021). https://doi.org/10.1002/adfm.201202502
|
136. |
X. Li, X. Yin, S. Liang, M. Li, L. Cheng et al., 2D carbide MXene Ti 2CT X as a novel high-performance electromagnetic interference shielding material. Carbon 146, 210-217 ( 2019). https://doi.org/10.1016/j.carbon.2019.02.003
|
137. |
|
138. |
K. Khan, A.K. Tareen, M. Iqbal, Z. Ye, Z. Xie et al., Recent progress in emerging novel MXenes based materials and their fascinating sensing applications. Small 19, e2206147 ( 2023). https://doi.org/10.1002/smll.202206147
|
139. |
|
140. |
M.T. Rahman, S.M. Sohel Rana, M. Salauddin, M. Abu Zahed, S. Lee et al., Silicone-incorporated nanoporous cobalt oxide and MXene nanocomposite-coated stretchable fabric for wearable triboelectric nanogenerator and self-powered sensing applications. Nano Energy 100, 107454 ( 2022). https://doi.org/10.1016/j.nanoen.2022.107454
|
141. |
|
142. |
|
143. |
H. Zhi, X. Zhang, F. Wang, P. Wan, L. Feng, Flexible Ti 3C 2T x MXene/PANI/bacterial cellulose aerogel for e-skins and gas sensing. ACS Appl. Mater. Interfaces 13, 45987-45994 ( 2021). https://doi.org/10.1021/acsami.1c12991
|
144. |
Q. Yu, J. Jiang, Z. Chen, C. Han, X. Zhang et al., A multilevel fluorometric biosensor based on boric acid embedded in carbon dots to detect intracellular and serum glucose. Sens. Actuat. B Chem. 350, 130898 ( 2022). https://doi.org/10.1016/j.snb.2021.130898
|
145. |
K. Zhang, J. Sun, J. Song, C. Gao, Z. Wang et al., Self-healing Ti 3C 2 MXene/PDMS supramolecular elastomers based on small biomolecules modification for wearable sensors. ACS Appl. Mater. Interfaces 12, 45306-45314 ( 2020). https://doi.org/10.1021/acsami.0c13653
|
146. |
Y. Xiang, L. Fang, F. Wu, S. Zhang, H. Ruan et al., 3D crinkled alk-Ti 3C 2 MXene based flexible piezoresistive sensors with ultra-high sensitivity and ultra-wide pressure range. Adv. Mater. Technol. 6, 2001157 ( 2021). https://doi.org/10.1002/admt.202001157
|
147. |
W. Wang, Y. Jiang, D. Zhong, Z. Zhang, S. Choudhury et al., Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 380, 735-742 ( 2023). https://doi.org/10.1126/science.ade0086
|
148. |
|
149. |
D. Lei, N. Liu, T. Su, Q. Zhang, L. Wang et al., Roles of MXene in pressure sensing: preparation, composite structure design, and mechanism. Adv. Mater. 34, e2110608 ( 2022). https://doi.org/10.1002/adma.202110608
|
150. |
Y.-W. Cai, X.-N. Zhang, G.-G. Wang, G.-Z. Li, D.-Q. Zhao et al., A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for E-skin. Nano Energy 81, 105663 ( 2021). https://doi.org/10.1016/j.nanoen.2020.105663
|
151. |
B. Xu, F. Ye, R. Chen, X. Luo, G. Chang et al., A wide sensing range and high sensitivity flexible strain sensor based on carbon nanotubes and MXene. Ceram. Int. 48, 10220-10226 ( 2022). https://doi.org/10.1016/j.ceramint.2021.12.235
|
152. |
X. Li, G. Shan, R. Ma, C.-H. Shek, H. Zhao et al., Bioinspired mineral MXene hydrogels for tensile strain sensing and radionuclide adsorption applications. Front. Phys. 17, 63501 ( 2022). https://doi.org/10.1007/s11467-022-1181-2
|
153. |
W. Yuan, X. Qu, Y. Lu, W. Zhao, Y. Ren et al., MXene-composited highly stretchable, sensitive and durable hydrogel for flexible strain sensors. Chin. Chem. Lett. 32, 2021-2026 ( 2021). https://doi.org/10.1016/j.cclet.2020.12.003
|
154. |
K. Chen, Y. Hu, F. Wang, M. Liu, P. Liu et al., Ultra-stretchable, adhesive, and self-healing MXene/polyampholytes hydrogel as flexible and wearable epidermal sensors. Colloids Surf. A Physicochem. Eng. Aspects 645, 128897 ( 2022). https://doi.org/10.1016/j.colsurfa.2022.128897
|
155. |
Y. Cai, J. Shen, C.-W. Yang, Y. Wan, H.-L. Tang et al., Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Sci. Adv. 6(48), eabb5367 ( 2020). https://doi.org/10.1126/sciadv.abb5367
|
156. |
Y. Bai, S. Bi, W. Wang, N. Ding, Y. Lu et al., Biocompatible, stretchable, and compressible cellulose/MXene hydrogel for strain sensor and electromagnetic interference shielding. Soft Mater. 20, 444-454 ( 2022). https://doi.org/10.1080/1539445x.2022.2081580
|
157. |
|
158. |
S.-N. Li, Z.-R. Yu, B.-F. Guo, K.-Y. Guo, Y. Li et al., Environmentally stable, mechanically flexible, self-adhesive, and electrically conductive Ti 3C 2T X MXene hydrogels for wide-temperature strain sensing. Nano Energy 90, 106502 ( 2021). https://doi.org/10.1016/j.nanoen.2021.106502
|
159. |
Q. Wang, X. Pan, C. Lin, H. Gao, S. Cao et al., Modified Ti 3C 2T X (MXene) nanosheet-catalyzed self-assembled, anti-aggregated, ultra-stretchable, conductive hydrogels for wearable bioelectronics. Chem. Eng. J. 401, 126129 ( 2020). https://doi.org/10.1016/j.cej.2020.126129
|
160. |
Y. Liu, D. Xu, Y. Ding, X. Lv, T. Huang et al., A conductive polyacrylamide hydrogel enabled by dispersion-enhanced MXene@chitosan assembly for highly stretchable and sensitive wearable skin. J. Mater. Chem. B 9(42), 8862-8870 ( 2021). https://doi.org/10.1039/D1TB01798E
|
161. |
D. Kong, Z.M. El-Bahy, H. Algadi, T. Li, S.M. El-Bahy et al., Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel. Adv. Compos. Hybrid Mater. 5, 1976-1987 ( 2022). https://doi.org/10.1007/s42114-022-00531-1
|
162. |
X. Wang, X. Wang, J. Yin, N. Li, Z. Zhang et al., Mechanically robust, degradable and conductive MXene-composited gelatin organohydrogel with environmental stability and self-adhesiveness for multifunctional sensor. Compos. Part B Eng. 241, 110052 ( 2022). https://doi.org/10.1016/j.compositesb.2022.110052
|
163. |
G. Ge, Y.Z. Zhang, W. Zhang, W. Yuan, J.K. El-Demellawi et al., Ti 3C 2T x MXene-activated fast gelation of stretchable and self-healing hydrogels: a molecular approach. ACS Nano 15, 2698-2706 ( 2021). https://doi.org/10.1021/acsnano.0c07998
|
164. |
H. Wang, J. Xiang, X. Wen, X. Du, Y. Wang et al., Multifunctional skin-inspired resilient MXene-embedded nanocomposite hydrogels for wireless wearable electronics. Compos. Part A Appl. Sci. Manuf. 155, 106835 ( 2022). https://doi.org/10.1016/j.compositesa.2022.106835
|
165. |
S. He, X. Sun, Z. Qin, X. Dong, H. Zhang et al., Non-swelling and anti-fouling MXene nanocomposite hydrogels for underwater strain sensing. Adv. Mater. Technol. 7, 2101343 ( 2022). https://doi.org/10.1002/admt.202101343
|
166. |
|
167. |
Z. Chen, Y. Hu, H. Zhuo, L. Liu, S. Jing et al., Compressible, elastic, and pressure-sensitive carbon aerogels derived from 2D titanium carbide nanosheets and bacterial cellulose for wearable sensors. Chem. Mater. 31, 3301-3312 ( 2019). https://doi.org/10.1021/acs.chemmater.9b00259
|
168. |
T. Su, N. Liu, Y. Gao, D. Lei, L. Wang et al., MXene/cellulose nanofiber-foam based high performance degradable piezoresistive sensor with greatly expanded interlayer distances. Nano Energy 87, 106151 ( 2021). https://doi.org/10.1016/j.nanoen.2021.106151
|
169. |
J. Yang, H. Li, J. Cheng, T. He, J. Li et al., Nanocellulose intercalation to boost the performance of MXene pressure sensor for human interactive monitoring. J. Mater. Sci. 56, 13859-13873 ( 2021). https://doi.org/10.1007/s10853-021-05909-y
|
170. |
H. Huang, Y. Dong, S. Wan, J. Shen, C. Li et al., A transient dual-type sensor based on MXene/cellulose nanofibers composite for intelligent sedentary and sitting postures monitoring. Carbon 200, 327-336 ( 2022). https://doi.org/10.1016/j.carbon.2022.08.070
|
171. |
T. Xu, Q. Song, K. Liu, H. Liu, J. Pan et al., Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15, 98 ( 2023). https://doi.org/10.1007/s40820-023-01073-x
|
172. |
D. Wang, L. Wang, Z. Lou, Y. Zheng, K. Wang et al., Biomimetic, biocompatible and robust silk Fibroin-MXene film with stable 3D cross-link structure for flexible pressure sensors. Nano Energy 78, 105252 ( 2020). https://doi.org/10.1016/j.nanoen.2020.105252
|
173. |
M. Bandar Abadi, R. Weissing, M. Wilhelm, Y. Demidov, J. Auer et al., Nacre-mimetic, mechanically flexible, and electrically conductive silk fibroin-MXene composite foams as piezoresistive pressure sensors. ACS Appl. Mater. Interfaces 13, 34996-35007 ( 2021). https://doi.org/10.1021/acsami.1c09675
|
174. |
Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao et al., 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12, 3209-3216 ( 2018). https://doi.org/10.1021/acsnano.7b06909
|
175. |
M. Paolieri, Z. Chen, F. Babu Kadumudi, M. Alehosseini, M. Zorrón et al., Biomimetic flexible electronic materials from silk fibroin-MXene composites developed via mussel-inspired chemistry as wearable pressure sensors. ACS Appl. Nano Mater. 6, 5211-5223 ( 2023). https://doi.org/10.1021/acsanm.2c05140
|
176. |
Y. Yang, W. Song, B. Murugesan, X. Cheng, M. Jiang et al., Oriented Ti 3C 2T x MXene-doped silk fibroin/hyaluronic acid hydrogels for sensitive compression strain monitoring with a wide resilience range and high cycling stability. Colloids Surf. A Physicochem. Eng. Aspects 665, 131221 ( 2023). https://doi.org/10.1016/j.colsurfa.2023.131221
|
177. |
M.I. Shekh, G. Zhu, W. Xiong, W. Wu, F.J. Stadler et al., Dynamically bonded, tough, and conductive MXene@oxidized sodium alginate: chitosan based multi-networked elastomeric hydrogels for physical motion detection. Int. J. Biol. Macromol. 224, 604-620 ( 2023). https://doi.org/10.1016/j.ijbiomac.2022.10.150
|
178. |
Q. Guo, X. Zhang, F. Zhao, Q. Song, G. Su et al., Protein-inspired self-healable Ti 3C 2 MXenes/rubber-based supramolecular elastomer for intelligent sensing. ACS Nano 14, 2788-2797 ( 2020). https://doi.org/10.1021/acsnano.9b09802
|
179. |
N. Noor, A. Shapira, R. Edri, I. Gal, L. Wertheim et al., 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv. Sci. 6, 1900344 ( 2019). https://doi.org/10.1002/advs.201900344
|
180. |
X. Xu, Y. Chen, P. He, S. Wang, K. Ling et al., Wearable CNT/Ti 3C 2T x MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring. Nano Res. 14, 2875-2883 ( 2021). https://doi.org/10.1007/s12274-021-3536-3
|
181. |
Q. Chen, Q. Gao, X. Wang, D.W. Schubert, X. Liu, Flexible, conductive, and anisotropic thermoplastic polyurethane/polydopamine/MXene foam for piezoresistive sensors and motion monitoring. Composites Part A: Appl. Sci. Manuf. 155, 106838 ( 2022). https://doi.org/10.1016/j.compositesa.2022.106838
|
182. |
H. Dong, J. Sun, X. Liu, X. Jiang, S. Lu, Highly sensitive and stretchable MXene/CNTs/TPU composite strain sensor with bilayer conductive structure for human motion detection. ACS Appl. Mater. Interfaces 14, 15504-15516 ( 2022). https://doi.org/10.1021/acsami.1c23567
|
183. |
H. Wang, R. Zhou, D. Li, L. Zhang, G. Ren et al., High-performance foam-shaped strain sensor based on carbon nanotubes and Ti 3C 2T x MXene for the monitoring of human activities. ACS Nano 15, 9690-9700 ( 2021). https://doi.org/10.1021/acsnano.1c00259
|
184. |
Q. Yi, X. Pei, P. Das, H. Qin, S.W. Lee et al., A self-powered triboelectric MXene-based 3D-printed wearable physiological biosignal sensing system for on-demand, wireless, and real-time health monitoring. Nano Energy 101, 107511 ( 2022). https://doi.org/10.1016/j.nanoen.2022.107511
|
185. |
J.S. Meena, S. Bin Choi, S.-B. Jung, J.-W. Kim, Recent progress of Ti 3C 2T x-based MXenes for fabrication of multifunctional smart textiles. Appl. Mater. Today 29, 101612 ( 2022). https://doi.org/10.1016/j.apmt.2022.101612
|
186. |
L.-X. Liu, W. Chen, H.-B. Zhang, Q.-W. Wang, F. Guan et al., Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29, 1905197 ( 2019). https://doi.org/10.1002/adfm.201905197
|
187. |
W.-T. Cao, C. Ma, D.-S. Mao, J. Zhang, M.-G. Ma et al., MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles. Adv. Funct. Mater. 29, 1905898 ( 2019). https://doi.org/10.1002/adfm.201905898
|
188. |
T. Li, L. Chen, X. Yang, X. Chen, Z. Zhang et al., A flexible pressure sensor based on an MXene-textile network structure. J. Mater. Chem. C 7, 1022-1027 ( 2019). https://doi.org/10.1039/C8TC04893B
|
189. |
J. Luo, S. Gao, H. Luo, L. Wang, X. Huang et al., Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics. Chem. Eng. J. 406, 126898 ( 2021). https://doi.org/10.1016/j.cej.2020.126898
|
190. |
|
191. |
S. Uzun, S. Seyedin, A.L. Stoltzfus, A.S. Levitt, M. Alhabeb et al., Knittable and washable multifunctional MXene-coated cellulose yarns. Adv. Funct. Mater. 29, 1905015 ( 2019). https://doi.org/10.1002/adfm.201905015
|
192. |
|
193. |
Q. Zhao, L. Yang, Y. Ma, H. Huang, H. He et al., Highly sensitive, reliable and flexible pressure sensor based on piezoelectric PVDF hybrid film using MXene nanosheet reinforcement. J. Alloys Compd. 886, 161069 ( 2021). https://doi.org/10.1016/j.jallcom.2021.161069
|
194. |
|
195. |
S. Tremmel, X. Luo, B. Rothammer, A. Seynstahl, B. Wang et al., Evaluation of DLC, MoS 2, and Ti3C2T thin films for triboelectric nanogenerators. Nano Energy 97, 107185 ( 2022). https://doi.org/10.1016/j.nanoen.2022.107185
|
196. |
M. Salauddin, S.M. Sohel Rana, M.T. Rahman, M. Sharifuzzaman, P. Maharjan et al., Fabric-assisted MXene/silicone nanocomposite-based triboelectric nanogenerators for self-powered sensors and wearable electronics. Adv. Funct. Mater. 32, 2107143 ( 2022). https://doi.org/10.1002/adfm.202107143
|
197. |
D. Lei, Q. Zhang, N. Liu, T. Su, L. Wang et al., An ion channel-induced self-powered flexible pressure sensor based on potentiometric transduction mechanism. Adv. Funct. Mater. 32, 2108856 ( 2022). https://doi.org/10.1002/adfm.202108856
|
198. |
T. Beduk, C. Durmus, S.B. Hanoglu, D. Beduk, K.N. Salama et al., Breath as the mirror of our body is the answer really blowing in the wind? Recent technologies in exhaled breath analysis systems as non-invasive sensing platforms. Trac Trends Anal. Chem. 143, 116329 ( 2021). https://doi.org/10.1016/j.trac.2021.116329
|
199. |
|
200. |
|
201. |
Y. Zhang, Y. Jiang, Z. Duan, Q. Huang, Y. Wu et al., Highly sensitive and selective NO 2 sensor of alkalized V 2CT MXene driven by interlayer swelling. Sens. Actuat. B Chem. 344, 130150 ( 2021). https://doi.org/10.1016/j.snb.2021.130150
|
202. |
J.L. Kelley, M. Tobler, D. Beck, I. Sadler-Riggleman, C.R. Quackenbush et al., Epigenetic inheritance of DNA methylation changes in fish living in hydrogen sulfide-rich springs. Proc. Natl. Acad. Sci. U.S.A. 118, 14929118 ( 2021). https://doi.org/10.1073/pnas.2014929118
|
203. |
Q. Xu, B. Zong, Q. Li, X. Fang, S. Mao et al., H 2S sensing under various humidity conditions with Ag nanoparticle functionalized Ti3C2Tx MXene field-effect transistors. J. Hazard. Mater. 424, 127492 ( 2022). https://doi.org/10.1016/j.jhazmat.2021.127492
|
204. |
E. Lee, A. VahidMohammadi, Y.S. Yoon, M. Beidaghi, D.J. Kim, Two-dimensional vanadium carbide MXene for gas sensors with ultrahigh sensitivity toward nonpolar gases. ACS Sens. 4, 1603-1611 ( 2019). https://doi.org/10.1021/acssensors.9b00303
|
205. |
J. Daniels, S. Wadekar, K. DeCubellis, G.W. Jackson, A.S. Chiu et al., A mask-based diagnostic platform for point-of-care screening of Covid-19. Biosens. Bioelectron. 192, 113486 ( 2021). https://doi.org/10.1016/j.bios.2021.113486
|
206. |
Z. Li, H. Li, Z. Wu, M. Wang, J. Luo et al., Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Mater. Horiz. 6, 470-506 ( 2019). https://doi.org/10.1039/c8mh01365a
|
207. |
L. Yang, G. Zheng, Y. Cao, C. Meng, Y. Li et al., Moisture-resistant, stretchable NO x gas sensors based on laser-induced graphene for environmental monitoring and breath analysis. Microsyst. Nanoeng. 8, 78 ( 2022). https://doi.org/10.1038/s41378-022-00414-x
|
208. |
K. Sung Bum, S. Amit, J. Myeong Hoon, B. Jeong Min, C. Kyoung Jin, Heterogeneous stacking of reduced graphene oxide on ZnO nanowires for NO 2 gas sensors with dramatically improved response and high sensitivity. Sensors Actuat. B Chem. 379, 133196 ( 2023). https://doi.org/10.1016/j.snb.2022.133196
|
209. |
|
210. |
|
211. |
A. Hermawan, T. Amrillah, A. Riapanitra, W.-J. Ong, S. Yin, Prospects and challenges of MXenes as emerging sensing materials for flexible and wearable breath-based biomarker diagnosis. Adv. Healthc. Mater. 10, e2100970 ( 2021). https://doi.org/10.1002/adhm.202100970
|
212. |
X.-F. Yu, Y.-C. Li, J.-B. Cheng, Z.-B. Liu, Q.-Z. Li et al., Monolayer Ti 2CO 2: a promising candidate for NH 3 sensor or capturer with high sensitivity and selectivity. ACS Appl. Mater. Interfaces 7, 13707-13713 ( 2015). https://doi.org/10.1021/acsami.5b03737
|
213. |
B. Xiao, Y.-C. Li, X.-F. Yu, J.-B. Cheng, MXenes: reusable materials for NH 3 sensor or capturer by controlling the charge injection. Sens. Actuat. B Chem. 235, 103-109 ( 2016). https://doi.org/10.1016/j.snb.2016.05.062
|
214. |
K. Dixit, S. Fardindoost, A. Ravishankara, N. Tasnim, M. Hoorfar, Exhaled breath analysis for diabetes diagnosis and monitoring: relevance, challenges and possibilities. Biosensors 11, 476 ( 2021). https://doi.org/10.3390/bios11120476
|
215. |
R.F. Del Río, M.E. O’Hara, A. Holt, P. Pemberton, T. Shah et al., Volatile biomarkers in breath associated with liver cirrhosis—comparisons of pre- and post-liver transplant breath samples. EBioMedicine 2, 1243-1250 ( 2015). https://doi.org/10.1016/j.ebiom.2015.07.027
|
216. |
A.M. Peel, M. Wilkinson, A. Sinha, Y.K. Loke, S.J. Fowler et al., Volatile organic compounds associated with diagnosis and disease characteristics in asthma—a systematic review. Respir. Med. 169, 105984 ( 2020). https://doi.org/10.1016/j.rmed.2020.105984
|
217. |
Y. Sakumura, Y. Koyama, H. Tokutake, T. Hida, K. Sato et al., Diagnosis by volatile organic compounds in exhaled breath from lung cancer patients using support vector machine algorithm. Sensors 17, 287 ( 2017). https://doi.org/10.3390/s17020287
|
218. |
V. Saasa, T. Malwela, M. Beukes, M. Mokgotho, C.-P. Liu et al., Sensing technologies for detection of acetone in human breath for diabetes diagnosis and monitoring. Diagnostics 8, 12 ( 2018). https://doi.org/10.3390/diagnostics8010012
|
219. |
L. Zhao, K. Wang, W. Wei, L. Wang, W. Han, High-performance flexible sensing devices based on polyaniline/MXene nanocomposites. InfoMat 1, 407-416 ( 2019). https://doi.org/10.1002/inf2.12032
|
220. |
W. Yuan, K. Yang, H. Peng, F. Li, F. Yin, A flexible VOCs sensor based on a 3D Mxene framework with a high sensing performance. J. Mater. Chem. A 6, 18116-18124 ( 2018). https://doi.org/10.1039/C8TA06928J
|
221. |
J. Choi, Y.-J. Kim, S.-Y. Cho, K. Park, H. Kang et al., In situ formation of multiple Schottky barriers in a Ti 3C 2 MXene film and its application in highly sensitive gas sensors. Adv. Funct. Mater. 30, 2003998 ( 2020). https://doi.org/10.1002/adfm.202003998
|
222. |
R. Zhang, L. Yang, G. Liu, F. Yin, W. Yuan et al., Polydopamine functionalized MXene for chemiresistive gas sensing: partial oxidation and optimized chemical state pinning. Sensors Actuat. B: Chem. 386, 133760 ( 2023). https://doi.org/10.1016/j.snb.2023.133760
|
223. |
|
224. |
|
225. |
A.A. Shahzad, S. Mushtaq, A. Waris, S.O. Gilani, M.A. Alnuwaiser et al., A low-cost device for measurement of exhaled breath for the detection of obstructive lung disease. Biosensors 12, 409 ( 2022). https://doi.org/10.3390/bios12060409
|
226. |
H.-Y. Li, C.-S. Lee, D.H. Kim, J.-H. Lee, Flexible room-temperature NH 3 sensor for ultrasensitive, selective, and humidity-independent gas detection. ACS Appl. Mater. Interfaces 10, 27858-27867 ( 2018). https://doi.org/10.1021/acsami.8b09169
|
227. |
E. Lee, A. VahidMohammadi, B.C. Prorok, Y.S. Yoon, M. Beidaghi et al., Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces 9, 37184-37190 ( 2017). https://doi.org/10.1021/acsami.7b11055
|
228. |
J. Zhou, S.H. Hosseini Shokouh, H.-P. Komsa, L. Rieppo, L. Cui et al., MXene-polymer hybrid for high-performance gas sensor prepared by microwave-assisted in-situ intercalation. Adv. Mater. Technol. 7, 2101565 ( 2022). https://doi.org/10.1002/admt.202101565
|
229. |
Y. Cai, Y. Wang, X. Wen, J. Xiong, H. Song et al., Ti 3C 2T x MXene/urchin-like PANI hollow nanosphere composite for high performance flexible ammonia gas sensor. Anal. Chim. Acta 1225, 340256 ( 2022). https://doi.org/10.1016/j.aca.2022.340256
|
230. |
X. Wen, Y. Cai, X. Nie, J. Xiong, Y. Wang et al., PSS-doped PANI nanoparticle/Ti 3C 2T x composites for conductometric flexible ammonia gas sensors operated at room temperature. Sens. Actuat. B Chem. 374, 132788 ( 2023). https://doi.org/10.1016/j.snb.2022.132788
|
231. |
L. Jin, C. Wu, K. Wei, L. He, H. Gao et al., Polymeric Ti 3C 2T x MXene composites for room temperature ammonia sensing. ACS Appl. Nano Mater. 3, 12071-12079 ( 2020). https://doi.org/10.1021/acsanm.0c02577
|
232. |
S. Wang, B. Liu, Z. Duan, Q. Zhao, Y. Zhang et al., PANI nanofibers-supported Nb 2CT x nanosheets-enabled selective NH 3 detection driven by TENG at room temperature. Sens. Actuat. B Chem. 327, 128923 ( 2021). https://doi.org/10.1016/j.snb.2020.128923
|
233. |
L. Zhao, Y. Zheng, K. Wang, C. Lv, W. Wei et al., Highly stable cross-linked cationic polyacrylamide/Ti 3C 2T x MXene nanocomposites for flexible ammonia-recognition devices. Adv. Mater. Technol. 5, 2000248 ( 2020). https://doi.org/10.1002/admt.202000248
|
234. |
S. Hajian, P. Khakbaz, M. Moshayedi, D. Maddipatla, B.B. Narakathu et al., Impact of different ratios of fluorine, oxygen, and hydroxyl surface terminations on Ti3C2Tx MXene as ammonia sensor: a first-principles study, in 2018 IEEE SENSORS. New Delhi, India (IEEE, 2018), pp.1-4
|
235. |
J. Zhou, S.H.H. Shokouh, L. Cui, T. Järvinen, O. Pitkänen et al., An ultra-sensitive NH 3 gas sensor enabled by an ion-in-conjugated polycroconaine/Ti 3C 2T x core-shell composite. Nanoscale Horiz. 8, 794-802 ( 2023). https://doi.org/10.1039/d2nh00591c
|
236. |
G.D. Banik, A. De, S. Som, S. Jana, S.B. Daschakraborty et al., Hydrogen sulphide in exhaled breath: a potential biomarker for small intestinal bacterial overgrowth in IBS. J. Breath Res. 10, 026010 ( 2016). https://doi.org/10.1088/1752-7155/10/2/026010
|
237. |
S.H. Hosseini-Shokouh, J. Zhou, E. Berger, Z.-P. Lv, X. Hong et al., Highly selective H 2S gas sensor based on Ti 3C 2T x MXene-organic composites. ACS Appl. Mater. Interfaces 15, 7063-7073 ( 2023). https://doi.org/10.1021/acsami.2c19883
|
238. |
B. Sun, H. Lv, Z. Liu, J. Wang, X. Bai et al., Co 3O 4@PEI/Ti 3C 2T x MXene nanocomposites for a highly sensitive NO x gas sensor with a low detection limit. J. Mater. Chem. A 9, 6335-6344 ( 2021). https://doi.org/10.1039/d0ta11392a
|
239. |
|
240. |
Y. Zhou, Y. Wang, Y. Wang, X. Li, Humidity-enabled ionic conductive trace carbon dioxide sensing of nitrogen-doped Ti 3C 2T x MXene/polyethyleneimine composite films decorated with reduced graphene oxide nanosheets. Anal. Chem. 92, 16033-16042 ( 2020). https://doi.org/10.1021/acs.analchem.0c03664
|
241. |
Z.H. Endre, J.W. Pickering, M.K. Storer, W.-P. Hu, K.T. Moorhead et al., Breath ammonia and trimethylamine allow real-time monitoring of haemodialysis efficacy. Physiol. Meas. 32, 115-130 ( 2011). https://doi.org/10.1088/0967-3334/32/1/008
|
242. |
X. Li, L. Jin, A. Ni, L. Zhang, L. He et al., Tough and antifreezing MXene@Au hydrogel for low-temperature trimethylamine gas sensing. ACS Appl. Mater. Interfaces 14, 30182-30191 ( 2022). https://doi.org/10.1021/acsami.2c06749
|
243. |
|
244. |
S.N. Shuvo, A.M. Ulloa Gomez, A. Mishra, W.Y. Chen, A.M. Dongare et al., Sulfur-doped titanium carbide MXenes for room-temperature gas sensing. ACS Sens. 5, 2915-2924 ( 2020). https://doi.org/10.1021/acssensors.0c01287
|
245. |
P. Chakraborty, T. Das, D. Nafday, T. Saha-Dasgupta, Manipulating the mechanical properties of Ti 2C MXene: effect of substitutional doping. Phys. Rev. B 95(18), 184106 ( 2017). https://doi.org/10.1103/PhysRevB.95.184106
|
246. |
|
247. |
|
248. |
|
249. |
V. Chaudhary, A. Gautam, Y.K. Mishra, A. Kaushik, Emerging MXene-polymer hybrid nanocomposites for high-performance ammonia sensing and monitoring. Nanomaterials 11, 2496 ( 2021). https://doi.org/10.3390/nano11102496
|
250. |
|
251. |
|