1. |
M. Metzger, M.M. Besli, S. Kuppan, S. Hellstrom, S. Kim et al., Techno-economic analysis of capacitive and intercalative water deionization. Energy Environ. Sci. 13, 1544-1560 ( 2020). https://doi.org/10.1039/D0EE00725K
|
2. |
P. Srimuk, X. Su, J. Yoon, D. Aurbach, V. Presser, Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nat. Rev. Mater. 5, 517-538 ( 2020). https://doi.org/10.1038/s41578-020-0193-1
|
3. |
|
4. |
|
5. |
W. Tang, D. He, C. Zhang, P. Kovalsky, T.D. Waite, Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes. Water Res. 120, 229-237 ( 2017). https://doi.org/10.1016/j.watres.2017.05.009
|
6. |
J. Lee, S. Kim, C. Kim, J. Yoon, Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy Environ. Sci. 7, 3683-3689 ( 2014). https://doi.org/10.1039/C4EE02378A
|
7. |
S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 58, 1388-1442 ( 2013). https://doi.org/10.1016/j.pmatsci.2013.03.005
|
8. |
Y. Jiang, L. Chai, D. Zhang, F. Ouyang, X. Zhou et al., Facet-controlled LiMn 2O 4/C as deionization electrode with enhanced stability and high desalination performance. Nano-Micro Lett. 14, 176 ( 2022). https://doi.org/10.1007/s40820-022-00897-3
|
9. |
Z. Liu, H. Li, Exploration of the exceptional capacitive deionization performance of CoMn 2O 4 microspheres electrode. Energy Environ. Mater. 6, 12255 ( 2023). https://doi.org/10.1002/eem2.12255
|
10. |
S. Wang, G. Wang, T. Wu, C. Li, Y. Wang et al., Membrane-free hybrid capacitive deionization system based on redox reaction for high-efficiency NaCl removal. Environ. Sci. Technol. 53, 6292-6301 ( 2019). https://doi.org/10.1021/acs.est.9b00662
|
11. |
J. Ma, Y. Xiong, X. Dai, F. Yu, Zinc spinel ferrite nanoparticles as a pseudocapacitive electrode with ultrahigh desalination capacity and long-term stability. Environ. Sci. Technol. Lett. 7, 118-125 ( 2020). https://doi.org/10.1021/acs.estlett.0c00027
|
12. |
M. Liang, X. Bai, F. Yu, J. Ma, A confinement strategy to in situ prepare a peanut-like N-doped, C-wrapped TiO 2 electrode with an enhanced desalination capacity and rate for capacitive deionization. Nano Res. 14, 684-691 ( 2021). https://doi.org/10.1007/s12274-020-3097-x
|
13. |
|
14. |
X. Zhang, E.A. Toledo-Carrillo, D. Yu, J. Dutta, Effect of surface charge on the fabrication of hierarchical Mn-based Prussian blue analogue for capacitive desalination. ACS Appl. Mater. Interfaces 14, 40371-40381 ( 2022). https://doi.org/10.1021/acsami.2c08192
|
15. |
W. Shi, X. Liu, T. Deng, S. Huang, M. Ding et al., Enabling superior sodium capture for efficient water desalination by a tubular polyaniline decorated with Prussian blue nanocrystals. Adv. Mater. 32, 1907404 ( 2020). https://doi.org/10.1002/adma.201907404
|
16. |
J. Guo, Y. Wang, Y. Cai, H. Zhang, Y. Li et al., Ni-doping Cu-Prussian blue analogue/carbon nanotubes composite (Ni-CuPBA/CNTs) with 3D electronic channel-rich network structure for capacitive deionization. Desalination 528, 115622 ( 2022). https://doi.org/10.1016/j.desal.2022.115622
|
17. |
|
18. |
S. Xing, Y. Cheng, F. Yu, J. Ma, Na 3(VO) 2(PO 4) 2F nanocuboids/graphene hybrid materials as faradic electrode for extra-high desalination capacity. J. Colloid Interface Sci. 598, 511-518 ( 2021). https://doi.org/10.1016/j.jcis.2021.04.051
|
19. |
J. Lei, Y. Xiong, F. Yu, J. Ma, Flexible self-supporting CoFe-LDH/MXene film as a chloride ions storage electrode in capacitive deionization. Chem. Eng. J. 437, 135381 ( 2022). https://doi.org/10.1016/j.cej.2022.135381
|
20. |
M. Liang, L. Wang, V. Presser, X. Dai, F. Yu et al., Combining battery-type and pseudocapacitive charge storage in Ag/Ti 3 C 2 t x MXene electrode for capturing chloride ions with high capacitance and fast ion transport. Adv. Sci. 7, e2000621 ( 2020). https://doi.org/10.1002/advs.202000621
|
21. |
X. Shen, Y. Xiong, R. Hai, F. Yu, J. Ma, All-MXene-based integrated membrane electrode constructed using Ti 3C 2T x as an intercalating agent for high-performance desalination. Environ. Sci. Technol. 54, 4554-4563 ( 2020). https://doi.org/10.1021/acs.est.9b05759
|
22. |
J. Zhang, J. Wang, F. Zhu, P. Mao, Z. Wu et al., Dispersing bentonite by electron beam irradiation and its adsorption performance of Cr(VI) in the aqueous solution. Water Air Soil Pollut. 233, 503 ( 2022). https://doi.org/10.1007/s11270-022-05980-4
|
23. |
Y. Xiong, F. Yu, S. Arnold, L. Wang, V. Presser et al., Three-dimensional cobalt hydroxide hollow cube/vertical nanosheets with high desalination capacity and long-term performance stability in capacitive deionization. Research 2021, 9754145 (2021). https://doi.org/10.34133/2021/9754145
|
24. |
F. Yu, L. Wang, Y. Wang, X. Shen, Y. Cheng et al., Faradaic reactions in capacitive deionization for desalination and ion separation. J. Mater. Chem. A 7, 15999-16027 ( 2019). https://doi.org/10.1039/C9TA01264H
|
25. |
|
26. |
|
27. |
S. Chen, Q. Wen, Y. Zhu, Y. Ji, Y. Pu et al., Boron-promoted reductive deoxygenation coupling reaction of sulfonyl chlorides for the C(sp3)-S bond construction. Chin. Chem. Lett. 33, 5101-5105 ( 2022). https://doi.org/10.1016/j.cclet.2022.04.022
|
28. |
X. Cai, J. Du, G. Zhong, Y. Zhang, L. Mao et al., Constructing a CeO 2/Zn xCd 1-xIn 2S 4 S-scheme hollow heterostructure for efficient photocatalytic H 2 evolution. Acta Phys. Chim. Sin. ( 2023). https://doi.org/10.3866/pku.whxb202302017
|
29. |
Y. Chen, C. Chen, X. Cao, Z. Wang, N. Zhang et al., Recent advances in defect and interface engineering for electroreduction of CO 2 and N 2. Acta Phys. Chim. Sin. ( 2023). https://doi.org/10.3866/pku.whxb202212053
|
30. |
W. Jiang, H. Jiang, W. Liu, X. Guan, Y. Li et al., Pickering emulsion templated proteinaceous microsphere with bio-stimuli responsiveness. Acta Phys. Chim. Sin. ( 2023). https://doi.org/10.3866/pku.whxb202301041
|
31. |
X. Wang, Y. Cheng, G. Xue, Z. Zhou, M. Zhao et al., Giant enhancement of optical second harmonic generation in hollow-core fiber integrated with GaSe nanoflakes. Acta Phys. Chim. Sin. ( 2023). https://doi.org/10.3866/pku.whxb202212028
|
32. |
Y. Xiong, F. Yu, J. Ma, Research progress in chlorine ion removal electrodes for desalination by capacitive deionization. Acta Phys. Chim. Sin. 38, 2006037 ( 2020). https://doi.org/10.3866/pku.whxb202006037
|
33. |
J. Mou, L. Chen, J. Fan, L. Zeng, X. Jiang et al., Construction of a highly active Rh/CeO 2-ZrO 2-Al 2O 3 catalyst based on Rh micro-chemical state regulation and its three-way catalytic activity. Acta Phys. Chim. Sin. 39, 2302041 ( 2023). https://doi.org/10.3866/pku.whxb202302041
|
34. |
|
35. |
S.P. Ong, V.L. Chevrier, G. Hautier, A. Jain, C. Moore et al., Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4, 3680-3688 ( 2011). https://doi.org/10.1039/C1EE01782A
|
36. |
A. Ali, M. Ammar, A. Mukhtar, T. Ahmed, M. Ali et al., 3D NiO nanowires@NiO nanosheets core-shell structures grown on nickel foam for high performance supercapacitor electrode. J. Electroanal. Chem. 857, 113710 ( 2020). https://doi.org/10.1016/j.jelechem.2019.113710
|
37. |
|
38. |
C. Yuan, X. Zhang, L. Su, B. Gao, L. Shen, Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J. Mater. Chem. 19, 5772-5777 ( 2009). https://doi.org/10.1039/B902221J
|
39. |
L. Fang, C. Wang, L. Huangfu, N. Bahlawane, H. Tian et al., Enabling full conversion reaction with high reversibility to approach theoretical capacity for sodium storage. Adv. Funct. Mater. 29, 1906680 ( 2019). https://doi.org/10.1002/adfm.201906680
|
40. |
L. Fang, Z. Lan, W. Guan, P. Zhou, N. Bahlawane et al., Hetero-interface constructs ion reservoir to enhance conversion reaction kinetics for sodium/lithium storage. Energy Storage Mater. 18, 107-113 ( 2019). https://doi.org/10.1016/j.ensm.2018.10.002
|
41. |
X. Xiong, C. Yang, G. Wang, Y. Lin, X. Ou et al., SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy Environ. Sci. 10, 1757-1763 ( 2017). https://doi.org/10.1039/C7EE01628J
|
42. |
M. Okubo, E. Hosono, J. Kim, M. Enomoto, N. Kojima et al., Nanosize effect on high-rate Li-ion intercalation in LiCoO 2 electrode. J. Am. Chem. Soc. 129, 7444-7452 ( 2007). https://doi.org/10.1021/ja0681927
|
43. |
|
44. |
S. Wang, Y. Zou, F. Xu, C. Xiang, H. Peng et al., Morphological control and electrochemical performance of NiCo 2O 4@NiCo layered double hydroxide as an electrode for supercapacitors. J. Energy Storage 41, 102862 ( 2021). https://doi.org/10.1016/j.est.2021.102862
|
45. |
|
46. |
Z. Jia, R. Ding, W. Yu, Y. Li, A. Wang et al., Unraveling the charge storage and activity-enhancing mechanisms of Zn-doping perovskite fluorides and engineering the electrodes and electrolytes for wide-temperature aqueous supercabatteries. Adv. Funct. Mater. 32, 2107674 ( 2022). https://doi.org/10.1002/adfm.202107674
|
47. |
S. Cao, Y. Li, Y. Tang, Y. Sun, W. Li et al., Space-confined metal ion strategy for carbon materials derived from cobalt benzimidazole frameworks with high desalination performance in simulated seawater. Adv. Mater. 35, e2301011 ( 2023). https://doi.org/10.1002/adma.202301011
|
48. |
H. Zhou, G. Zhu, S. Dong, P. Liu, Y. Lu et al., Ethanol-induced Ni 2+-intercalated cobalt organic frameworks on vanadium pentoxide for synergistically enhancing the performance of 3D-printed micro-supercapacitors. Adv. Mater. 35, e2211523 ( 2023). https://doi.org/10.1002/adma.202211523
|
49. |
X.-T. Wang, T. Ouyang, L. Wang, J.-H. Zhong, Z.-Q. Liu, Surface reorganization on electrochemically-induced Zn-Ni-co spinel oxides for enhanced oxygen electrocatalysis. Angew. Chem. Int. Ed. 59, 6492-6499 ( 2020). https://doi.org/10.1002/anie.202000690
|
50. |
X. Liu, Z. Chang, L. Luo, T. Xu, X. Lei et al., Hierarchical Zn xCo 3-xO 4 nanoarrays with high activity for electrocatalytic oxygen evolution. Chem. Mater. 26, 1889-1895 ( 2014). https://doi.org/10.1021/cm4040903
|
51. |
J. Li, Z. Liu, Q. Zhang, Y. Cheng, B. Zhao et al., Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors. Nano Energy 57, 22-33 ( 2019). https://doi.org/10.1016/j.nanoen.2018.12.011
|
52. |
Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang et al., A flexible all-solid-state micro-supercapacitor based on hierarchical CuO@layered double hydroxide core-shell nanoarrays. Nano Energy 20, 294-304 ( 2016). https://doi.org/10.1016/j.nanoen.2015.12.030
|
53. |
S.-I. Kim, J.-S. Lee, H.-J. Ahn, H.-K. Song, J.-H. Jang, Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology. ACS Appl. Mater. Interfaces 5, 1596-1603 ( 2013). https://doi.org/10.1021/am3021894
|
54. |
X. Lou, C. Yuan, E. Rhoades, Q. Zhang, L. Archer, Encapsulation and Ostwald ripening of Au and Au-Cl complex nanostructures in silica shells. Adv. Funct. Mater. 16, 1679-1684 ( 2006). https://doi.org/10.1002/adfm.200500909
|
55. |
C.-Y. Cao, W. Guo, Z.-M. Cui, W.-G. Song, W. Cai, Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes. J. Mater. Chem. 21, 3204-3209 ( 2011). https://doi.org/10.1039/C0JM03749D
|
56. |
T. Liu, J. Serrano, J. Elliott, X. Yang, W. Cathcart et al., Exceptional capacitive deionization rate and capacity by block copolymer-based porous carbon fibers. Sci. Adv. 6, 0906 ( 2020). https://doi.org/10.1126/sciadv.aaz0906
|
57. |
X. Gong, S. Zhang, W. Luo, N. Guo, L. Wang et al., Enabling a large accessible surface area of a pore-designed hydrophilic carbon nanofiber fabric for ultrahigh capacitive deionization. ACS Appl. Mater. Interfaces 12, 49586-49595 ( 2020). https://doi.org/10.1021/acsami.0c13503
|
58. |
H. Chen, L. Hu, M. Chen, Y. Yan, L. Wu, Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv. Funct. Mater. 24, 934-942 ( 2014). https://doi.org/10.1002/adfm.201301747
|
59. |
Q. Pan, F. Zheng, D. Deng, B. Chen, Y. Wang, Interlayer spacing regulation of NiCo-LDH nanosheets with ultrahigh specific capacity for battery-type supercapacitors. ACS Appl. Mater. Interfaces 13, 56692-56703 ( 2021). https://doi.org/10.1021/acsami.1c19320
|
60. |
D. Li, S. Wang, G. Wang, C. Li, X. Che et al., Facile fabrication of NiCoAl-layered metal oxide/graphene nanosheets for efficient capacitive deionization defluorination. ACS Appl. Mater. Interfaces 11, 31200-31209 ( 2019). https://doi.org/10.1021/acsami.9b10307
|
61. |
B. Peng, Y. Chen, F. Wang, Z. Sun, L. Zhao et al., Unusual site-selective doping in layered cathode strengthens electrostatic cohesion of alkali-metal layer for practicable sodium-ion full cell. Adv. Mater. 34, e2103210 ( 2022). https://doi.org/10.1002/adma.202103210
|
62. |
Q. Yin, D. Rao, G. Zhang, Y. Zhao, J. Han et al., CoFe-Cl layered double hydroxide: a new cathode material for high-performance chloride ion batteries. Adv. Funct. Mater. 29, 1900983 ( 2019). https://doi.org/10.1002/adfm.201900983
|
63. |
S. Fleischmann, J.B. Mitchell, R. Wang, C. Zhan, D.-E. Jiang et al., Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem. Rev. 120, 6738-6782 ( 2020). https://doi.org/10.1021/acs.chemrev.0c00170
|
64. |
J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao et al., Nanoporous Ni(OH) 2 thin film on 3D Ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7, 6237-6243 ( 2013). https://doi.org/10.1021/nn4021955
|
65. |
X. Lu, D. Zheng, T. Zhai, Z. Liu, Y. Huang et al., Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. Energy Environ. Sci. 4, 2915-2921 ( 2011). https://doi.org/10.1039/C1EE01338F
|
66. |
J. Guo, X. Xu, J.P. Hill, L. Wang, J. Dang et al., Graphene-carbon 2D heterostructures with hierarchically-porous P, N-doped layered architecture for capacitive deionization. Chem. Sci. 12, 10334-10340 ( 2021). https://doi.org/10.1039/D1SC00915J
|
67. |
B. Zhao, R. Wang, Y. Li, Y. Ren, X. Li et al., Dependence of electromagnetic interference shielding ability of conductive polymer composite foams with hydrophobic properties on cellular structure. J. Mater. Chem. C 8, 7401-7410 ( 2020). https://doi.org/10.1039/D0TC00987C
|
68. |
M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon et al., Water desalination via capacitive deionization: what is it and what can we expect from it? Energy Environ. Sci. 8, 2296-2319 ( 2015). https://doi.org/10.1039/C5EE00519A
|
69. |
C. Zhang, D. Wang, Z. Wang, G. Zhang, Z. Liu et al., Boosting capacitive deionization performance of commercial carbon fibers cloth via structural regulation based on catalytic-etching effect. Energy Environ. Mater. 6, 12276 ( 2023). https://doi.org/10.1002/eem2.12276
|
70. |
W. Lei, J. Liang, P. Tan, S. Yang, L. Fan et al., Preparation of edible starch nanomaterials for the separation of polyphenols from fruit pomace extract and determination of their adsorption properties. Int. J. Biol. Macromol. 222, 2054-2064 ( 2022). https://doi.org/10.1016/j.ijbiomac.2022.10.004
|
71. |
|
72. |
N. Liu, L. Yu, B. Liu, F. Yu, L. Li et al., Ti 3C 2-MXene partially derived hierarchical 1D/2D TiO 2/Ti 3C 2 heterostructure electrode for high-performance capacitive deionization. Adv. Sci. 10, 2204041 ( 2023). https://doi.org/10.1002/advs.202204041
|
73. |
H.-Y. Huang, Y.-H. Tu, Y.-H. Yang, Y.-T. Lu, C.-C. Hu, Dopant-designed conducting polymers for constructing a high-performance, electrochemical deionization system achieving low energy consumption and long cycle life. Chem. Eng. J. 457, 141373 ( 2023). https://doi.org/10.1016/j.cej.2023.141373
|
74. |
J. Liang, J. Yu, W. Xing, W. Tang, N. Tang et al., 3D interconnected network architectures assembled from W 18O 49 and Ti 3C 2 MXene with excellent electrochemical properties and CDI performance. Chem. Eng. J. 435, 134922 ( 2022). https://doi.org/10.1016/j.cej.2022.134922
|
75. |
Z. Bo, Z. Huang, C. Xu, Y. Chen, E. Wu et al., Anion-kinetics-selective graphene anode and cation-energy-selective MXene cathode for high-performance capacitive deionization. Energy Storage Mater. 50, 395-406 ( 2022). https://doi.org/10.1016/j.ensm.2022.05.042
|
76. |
Q. Li, X. Xu, J. Guo, J.P. Hill, H. Xu et al., Two-dimensional MXene-polymer heterostructure with ordered In-plane mesochannels for high-performance capacitive deionization. Angew. Chem. Int. Ed. 60, 26528-26534 ( 2021). https://doi.org/10.1002/anie.202111823
|
77. |
|
78. |
H.-S. Kim, J.B. Cook, H. Lin, J.S. Ko, S.H. Tolbert et al., Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO 3-x. Nat. Mater. 16, 454-460 ( 2017). https://doi.org/10.1038/nmat4810
|
79. |
|
80. |
|
81. |
N. Shpigel, M.D. Levi, S. Sigalov, O. Girshevitz, D. Aurbach et al., In situ hydrodynamic spectroscopy for structure characterization of porous energy storageelectrodes. Nat. Mater. 15, 570-575 ( 2016). https://doi.org/10.1038/nmat4577
|
82. |
P. Roach, D. Farrar, C.C. Perry, Interpretation of protein adsorption: surface-induced conformational changes. J. Am. Chem. Soc. 127, 8168-8173 ( 2005). https://doi.org/10.1021/ja042898o
|
83. |
X. Sun, J. Sun, C. Wu, L. Guo, L. Hou et al., Unveiling composition/crystal structure-dependent electrochemical behaviors via experiments and first-principles calculations: rock-salt NiCoO 2 vs. spinel Ni 1.5Co 1.5O 4. Mater. Today Energy 19, 100592 ( 2021). https://doi.org/10.1016/j.mtener.2020.100592
|
84. |
J. Yang, C. Yu, X. Fan, S. Liang, S. Li et al., Electroactive edge site-enriched nickel-cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy Environ. Sci. 9, 1299-1307 ( 2016). https://doi.org/10.1039/C5EE03633J
|
85. |
Z. Wang, Z. Zhao, Y. Zhang, X. Yang, X. Sun et al., Spatially self-confined formation of ultrafine NiCoO 2 Nanoparticles@Ultralong amorphous N-doped carbon nanofibers as an anode towards efficient capacitive Li + storage. Chemistry 25, 863-873 ( 2019). https://doi.org/10.1002/chem.201804823
|