1. |
S. Lee, M. Kim, K.T. Lee, J.T.S. Irvine, T.H. Shin, Enhancing electrochemical CO 2 reduction using Ce(Mn, Fe)O 2 with La(Sr)Cr(Mn)O 3 cathode for high-temperature solid oxide electrolysis cells. Adv. Energy Mater. 11, 2100339 ( 2021). https://doi.org/10.1002/aenm.202100339
|
2. |
|
3. |
X. Xi, J. Liu, W. Luo, Y. Fan, J. Zhang et al., Unravelingthe enhanced kinetics of Sr 2Fe 1+xMo 1-xO 6-δ electrocatalysts for high-performance solid oxide cells. Adv. Energy Mater. 11, 2170187 ( 2021). https://doi.org/10.1002/aenm.202170187
|
4. |
K. Zhang, Y. Zhao, W. He, P. Zhao, D. Zhang et al., Pr and Mo Co-doped SrFeO 3-δ as an efficient cathode for pure CO 2 reduction reaction in a solid oxide electrolysis cell. Energy Technol. 8, 2070101 ( 2020). https://doi.org/10.1002/ente.202070101
|
5. |
|
6. |
Y. Li, Y. Li, Y. Wan, Y. Xie, J. Zhu et al., Perovskite oxyfluoride electrode enabling direct electrolyzing carbon dioxide with excellent electrochemical performances. Adv. Energy Mater. 9, 1803156 ( 2019). https://doi.org/10.1002/aenm.201803156
|
7. |
F. He, M. Hou, F. Zhu, D. Liu, H. Zhang et al., Building efficient and durable hetero-interfaces on a perovskite-based electrode for electrochemical CO 2 reduction. Adv. Energy Mater. 12, 2202175 ( 2022). https://doi.org/10.1002/aenm.202202175
|
8. |
E.P. Murray, T. Tsai, S.A. Barnett, A direct-methane fuel cell with a ceria-based anode. Nature 400, 649-651 ( 1999). https://doi.org/10.1038/23220
|
9. |
W. Yue, Y. Li, Y. Zheng, T. Wu, C. Zhao et al., Enhancing coking resistance of Ni/YSZ electrodes: in situ characterization, mechanism research, and surface engineering. Nano Energy 62, 64-78 ( 2019). https://doi.org/10.1016/j.nanoen.2019.05.006
|
10. |
J. Lee, S. Hwang, M. Ahn, M. Choi, S. Han et al., Enhanced interface reactivity by a nanowrinkled functional layer for intermediate-temperature solid oxide fuel cells. J. Mater. Chem. A. 7, 21120-21127 ( 2019). https://doi.org/10.1039/c9ta04818a
|
11. |
S. Lee, S.H. Woo, T.H. Shin, J.T.S. Irvine, Pd and GDC Co-infiltrated LSCM cathode for high-temperature CO 2 electrolysis using solid oxide electrolysis cells. Chem. Eng. J. 420, 127706 ( 2021). https://doi.org/10.1016/j.cej.2020.127706
|
12. |
Z. Yang, C. Ma, N. Wang, X. Jin, C. Jin et al., Electrochemical reduction of CO 2 in a symmetrical solid oxide electrolysis cell with La 0.4Sr 0.6Co 0.2Fe 0.7Nb 0.1O 3-δ electrode. J. CO2 Util. 33, 445-451 ( 2019). https://doi.org/10.1016/j.jcou.2019.07.021
|
13. |
Y. Li, Y. Li, S. Zhang, C. Ren, Y. Jing et al., Mutual conversion of CO-CO 2 on a perovskite fuel electrode with endogenous alloy nanoparticles for reversible solid oxide cells. ACS Appl. Mater. Interfaces 14, 9138-9150 ( 2022). https://doi.org/10.1021/acsami.1c23548
|
14. |
H. Lv, T. Liu, X. Zhang, Y. Song, H. Matsumoto et al., Atomic-scale insight into exsolution of CoFe alloy nanoparticles in La 0.4Sr 0.6Co 0.2Fe 0.7Mo 0.1O 3-δ with efficient CO 2 electrolysis. Angew. Chem. Int. Ed. 59, 15968-15973 ( 2020). https://doi.org/10.1002/anie.202006536
|
15. |
J. Li, Q. Liu, Y. Song, H. Lv, W. Feng et al., In-situ exsolution of cobalt nanoparticles from La 0.5Sr 0.5Fe 0.8Co 0.2O 3-δ cathode for enhanced CO 2 electrolysis performance. Green Chem. Eng. 3, 250-258 ( 2022). https://doi.org/10.1016/j.gce.2021.12.011
|
16. |
K.J. Kim, C. Lim, K.T. Bae, J.J. Lee, M.Y. Oh et al., Concurrent promotion of phase transition and bimetallic nanocatalyst exsolution in perovskite oxides driven by Pd doping to achieve highly active bifunctional fuel electrodes for reversible solid oxide electrochemical cells. Appl. Catal. B Environ. 314, 121517 ( 2022). https://doi.org/10.1016/j.apcatb.2022.121517
|
17. |
S.D. Ebbesen, S.H. Jensen, A. Hauch, M.B. Mogensen, High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells. Chem. Rev. 114, 10697-10734 ( 2014). https://doi.org/10.1021/cr5000865
|
18. |
S. Wang, H. Tsuruta, M. Asanuma, T. Ishihara, Ni-Fe-La(Sr)Fe(Mn)O 3 as a new active cermet cathode for intermediate-temperature CO 2 electrolysis using a LaGaO 3-based electrolyte. Adv. Energy Mater. 5, 1401003 ( 2015). https://doi.org/10.1002/aenm.201401003
|
19. |
L. Fan, B. Zhu, P.-C. Su, C. He, Nanomaterials and technologies for low temperature solid oxide fuel cells: recent advances, challenges and opportunities. Nano Energy 45, 148-176 ( 2018). https://doi.org/10.1016/j.nanoen.2017.12.044
|
20. |
M. Zhi, S. Lee, N. Miller, N.H. Menzler, N. Wu, An intermediate-temperature solid oxide fuel cell with electrospun nanofiber cathode. Energy Environ. Sci. 5, 7066 ( 2012). https://doi.org/10.1039/c2ee02619h
|
21. |
L. Fan, Y. Xiong, L. Liu, Y. Wang, H. Kishimoto et al., Performance of Gd 0.2Ce 0.8O 1.9 infiltrated La 0.2Sr 0.8TiO 3 nanofiber scaffolds as anodes for solid oxide fuel cells. J. Power Sour. 265, 125-131 ( 2014). https://doi.org/10.1016/j.jpowsour.2014.04.109
|
22. |
Y. Chen, Y. Bu, Y. Zhang, R. Yan, D. Ding et al., A highly efficient and robust nanofiber cathode for solid oxide fuel cells. Adv. Energy Mater. 7, 1601890 ( 2017). https://doi.org/10.1002/aenm.201601890
|
23. |
Y. Choi, H.J. Cho, J. Kim, J.Y. Kang, J. Seo et al., Nanofiber composites as highly active and robust anodes for direct-hydrocarbon solid oxide fuel cells. ACS Nano 16, 14517-14526 ( 2022). https://doi.org/10.1021/acsnano.2c04927
|
24. |
|
25. |
|
26. |
X. Bian, Q. Fu, C. Qiu, X. Bie, F. Du et al., Carbon black and vapor grown carbon fibers binary conductive additive for the Li 1.18Co 0.15Ni 0.15Mn 0.52O 2 electrodes for Li-ion batteries. Mater. Chem. Phys. 156, 69-75 ( 2015). https://doi.org/10.1016/j.matchemphys.2015.02.024
|
27. |
J.H. Park, K.T. Bae, K.J. Kim, D.W. Joh, D. Kim et al., Ultra-fast fabrication of tape-cast anode supports for solid oxide fuel cells via resonant acoustic mixing technology. Ceram. Int. 45, 12154-12161 ( 2019). https://doi.org/10.1016/j.ceramint.2019.03.119
|
28. |
T.H. Wan, M. Saccoccio, C. Chen, F. Ciucci, Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochim. Acta 184, 483-499 ( 2015). https://doi.org/10.1016/j.electacta.2015.09.097
|
29. |
D.W. Joh, A. Cha, J.H. Park, K.J. Kim, K.T. Bae et al., In situ synthesized La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ-Gd 0.1Ce 0.9O 1.95 nanocomposite cathodes via a modified sol-gel process for intermediate temperature solid oxide fuel cells. ACS Appl. Nano Mater. 1, 2934-2942 ( 2018). https://doi.org/10.1021/acsanm.8b00566
|
30. |
J.A. Taillon, C. Pellegrinelli, Y.-L. Huang, E.D. Wachsman, L.G. Salamanca-Riba, Improving microstructural quantification in FIB/SEM nanotomography. Ultramicroscopy 184, 24-38 ( 2018). https://doi.org/10.1016/j.ultramic.2017.07.017
|
31. |
S.S. Shin, J.H. Kim, K.T. Bae, K.-T. Lee, S.M. Kim et al., Multiscale structured low-temperature solid oxide fuel cells with 13 W power at 500 ℃. Energy Environ. Sci. 13, 3459-3468 ( 2020). https://doi.org/10.1039/d0ee00870b
|
32. |
J. Park, K.T. Bae, D. Kim, W. Jeong, J. Nam et al., Unraveling the limitations of solid oxide electrolytes for all-solid-state electrodes through 3D digital twin structural analysis. Nano Energy 79, 105456 2021). https://doi.org/10.1016/j.nanoen.2020.105456
|
33. |
|
34. |
A. Buades, B. Coll, J.M. Morel, A non-local algorithm for image denoising. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR‘05). San Diego, CA, USA. IEEE, (2005). p60-65.
|
35. |
W.M. Harris, J.J. Lombardo, G.J. Nelson, B. Lai, S. Wang et al., Three-dimensional microstructural imaging of sulfur poisoning-induced degradation in a Ni-YSZ anode of solid oxide fuel cells. Sci. Rep. 4, 5246 ( 2014). https://doi.org/10.1038/srep05246
|
36. |
|
37. |
S.J. Cooper, A. Bertei, P.R. Shearing, J.A. Kilner, N.P. Brandon, TauFactor: an open-source application for calculating tortuosity factors from tomographic data. SoftwareX 5, 203-210 ( 2016). https://doi.org/10.1016/j.softx.2016.09.002
|
38. |
|
39. |
|
40. |
W. Lu, J. Shen, P. Zhang, Y. Zhong, Y. Hu et al., Construction of CoO/co-Cu-S hierarchical tubular heterostructures for hybrid supercapacitors. Angew. Chem. Int. Ed. 131, 15587-15593 ( 2019). https://doi.org/10.1002/ange.201907516
|
41. |
J.H. Park, J.H. Shin, J.M. Ju, J.H. Lee, C. Choi et al., Modulating the electrocatalytic activity of N-doped carbon frameworks via coupling with dual metals for Zn-air batteries. Nano Converg. 9, 17 ( 2022). https://doi.org/10.1186/s40580-022-00308-8
|
42. |
P. Wang, T. Yuan, H. Yuan, X. Zheng, H. Ijaz et al., PdO/SnO 2 heterostructure for low-temperature detection of CO with fast response and recovery. RSC Adv. 9, 22875-22882 ( 2019). https://doi.org/10.1039/c9ra03171e
|
43. |
J. Li, B. Wei, X. Yue, Z. Lü, A highly efficient and robust perovskite anode with iron-palladium co-exsolutions for intermediate-temperature solid-oxide fuel cells. Chemsuschem 11, 2593-2603 ( 2018). https://doi.org/10.1002/cssc.201800641
|
44. |
D.J. Deka, J. Kim, S. Gunduz, D. Jain, Y. Shi et al., Coke formation during high-temperature CO 2 electrolysis over AFeO 3 (A = La/Sr) cathode: effect of A-site metal segregation. Appl. Catal. B Environ. 283, 119642 ( 2021). https://doi.org/10.1016/j.apcatb.2020.119642
|
45. |
X. Xi, J. Liu, Y. Fan, L. Wang, J. Li et al., Reducing d-p band coupling to enhance CO 2 electrocatalytic activity by Mg-doping in Sr 2FeMoO 6-δ double perovskite for high performance solid oxide electrolysis cells. Nano Energy 82, 105707 2021). https://doi.org/10.1016/j.nanoen.2020.105707
|
46. |
C. Yang, Y. Tian, J. Pu, B. Chi, Anion fluorine-doped La 0.6Sr 0.4Fe 0.8Ni 0.2O 3-δ perovskite cathodes with enhanced electrocatalytic activity for solid oxide electrolysis cell direct CO 2 electrolysis. ACS Sustain Chem. Eng. 10, 1047-1058 ( 2022). https://doi.org/10.1021/acssuschemeng.1c07576
|
47. |
L. Zhang, W. Sun, C. Xu, R. Ren, X. Yang et al., Two-fold improvement in chemical adsorption ability to achieve effective carbon dioxide electrolysis. Appl. Catal. B Environ. 317, 121754 ( 2022). https://doi.org/10.1016/j.apcatb.2022.121754
|
48. |
S. Zhang, Y. Jiang, H. Han, Y. Li, C. Xia, Perovskite oxyfluoride ceramic with in situ exsolved Ni-Fe nanoparticles for direct CO 2 electrolysis in solid oxide electrolysis cells. ACS Appl. Mater. Interfaces 14, 28854-28864 ( 2022). https://doi.org/10.1021/acsami.2c05324
|
49. |
L. Zhang, S. Hu, W. Li, Z. Cao, H. Liu et al., Nano-CeO 2-modified cathodes for direct electrochemical CO 2 reduction in solid oxide electrolysis cells. ACS. Sustain. Chem. Eng. 7, 9629-9636 ( 2019). https://doi.org/10.1021/acssuschemeng.9b01183
|
50. |
S. Park, Y. Kim, H. Han, Y.S. Chung, W. Yoon et al., In situ exsolved co nanoparticles on ruddlesden-popper material As highly active catalyst for CO 2 electrolysis to CO. Meet. Abstr. ( 2019). https://doi.org/10.1149/ma2019-01/33/1751
|
51. |
K.T. Bae, I. Jeong, D. Kim, H. Yu, H.-N. Im et al., Highly active cobalt-free perovskites with Bi doping as bifunctional oxygen electrodes for solid oxide cells. Chem. Eng. J. 461, 142051 ( 2023). https://doi.org/10.1016/j.cej.2023.142051
|
52. |
B.-H. Yun, K.J. Kim, D.W. Joh, M.S. Chae, J.J. Lee et al., Highly active and durable double-doped bismuth oxide-based oxygen electrodes for reversible solid oxide cells at reduced temperatures. J. Mater. Chem. A 7, 20558-20566 ( 2019). https://doi.org/10.1039/c9ta09203j
|
53. |
D. Kim, J.W. Park, M.S. Chae, I. Jeong, J.H. Park et al., An efficient and robust lanthanum strontium cobalt ferrite catalyst as a bifunctional oxygen electrode for reversible solid oxide cells. J. Mater. Chem. A 9, 5507-5521 ( 2021). https://doi.org/10.1039/d0ta11233j
|
54. |
T. Tan, Z. Wang, M. Qin, W. Zhong, J. Hu et al., In situ exsolution of core-shell structured NiFe/FeO x nanoparticles on Pr 0.4Sr 1.6(NiFe) 1.5Mo 0.5O 6-δ for CO 2 electrolysis. Adv. Funct. Mater. 32, 2202878 ( 2022). https://doi.org/10.1002/adfm.202202878
|
55. |
X. Yang, K. Sun, M. Ma, C. Xu, R. Ren et al., Achieving strong chemical adsorption ability for efficient carbon dioxide electrolysis. Appl. Catal. B Environ. 272, 118968 ( 2020). https://doi.org/10.1016/j.apcatb.2020.118968
|
56. |
Y. Zhou, Z. Zhou, Y. Song, X. Zhang, F. Guan et al., Enhancing CO 2 electrolysis performance with vanadium-doped perovskite cathode in solid oxide electrolysis cell. Nano Energy 50, 43-51 ( 2018). https://doi.org/10.1016/j.nanoen.2018.04.054
|
57. |
H. Yu, H.-N. Im, K.T. Lee, Exceptionally high-performance reversible solid oxide electrochemical cells with ultrathin and defect-free Sm 0.075Nd 0.075Ce 0.85O 2-δ interlayers. Adv. Funct. Mater. 32, 2207725 ( 2022). https://doi.org/10.1002/adfm.202207725
|
58. |
X. Yang, W. Sun, M. Ma, C. Xu, R. Ren et al., Achieving highly efficient carbon dioxide electrolysis by In situ construction of the heterostructure. ACS Appl. Mater. Interfaces 13, 20060-20069 ( 2021). https://doi.org/10.1021/acsami.1c02146
|
59. |
Y. Jiang, Y. Yang, C. Xia, H.J.M. Bouwmeester, Sr 2Fe 1.4Mn 0.1Mo 0.5O 6-δ perovskite cathode for highly efficient CO 2 electrolysis. J. Mater. Chem. A 7, 22939-22949 ( 2019). https://doi.org/10.1039/c9ta07689a
|