1. |
X. Yao, S. Zhang, L. Qian, N. Wei, V. Nica et al., Super stretchable, self-healing, adhesive ionic conductive hydrogels based on tailor-made ionic liquid for high-performance strain sensors. Adv. Funct. Mater. 32, 2204565 ( 2022). https://doi.org/10.1002/adfm.202204565
|
2. |
S. Wang, D. Zhang, X. He, J. Zhou, Y. Zhou et al., Anti-swelling zwitterionic hydrogels as multi-modal underwater sensors and all-in-one supercapacitors. ACS Appl. Polym. Mater. 4, 7498-7507 ( 2022). https://doi.org/10.1021/acsapm.2c01202
|
3. |
X. Luo, L. Zhu, Y.-C. Wang, J. Li, J. Nie et al., A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel. Adv. Funct. Mater. 31, 2104928 ( 2021). https://doi.org/10.1002/adfm.202104928
|
4. |
J. Xu, R. Jin, X. Ren, G. Gao, A wide temperature-tolerant hydrogel electrolyte mediated by phosphoric acid towards flexible supercapacitors. Chem. Eng. J. 413, 127446 ( 2021). https://doi.org/10.1016/j.cej.2020.127446
|
5. |
W. Peng, L. Han, Y. Gao, Z. Gong, T. Lu et al., Flexible organohydrogel ionic skin with ultra-low temperature freezing resistance and ultra-durable moisture retention. J. Colloid Interface Sci. 608, 396-404 ( 2022). https://doi.org/10.1016/j.jcis.2021.09.125
|
6. |
C. Ge, Y. Ling, S. Yan, S. Luan, H. Zhang et al., Preparation and mechanical properties of strong and tough poly (vinyl alcohol)-polypeptide double-network hydrogels. Eur. Polym. J. 99, 504-510 ( 2018). https://doi.org/10.1016/j.eurpolymj.2018.01.005
|
7. |
Y. Ye, Y. Zhang, Y. Chen, X. Han, F. Jiang, Cellulose nanofibrils enhanced, strong, stretchable, freezing-tolerant ionic conductive organohydrogel for multi-functional sensors. Adv. Funct. Mater. 30, 2003430 ( 2020). https://doi.org/10.1002/adfm.202003430
|
8. |
H. Zhou, J. Lai, B. Zheng, X. Jin, G. Zhao et al., From glutinous-rice-inspired adhesive organohydrogels to flexible electronic devices toward wearable sensing, power supply, and energy storage. Adv. Funct. Mater. 32, 2108423 ( 2022). https://doi.org/10.1002/adfm.202108423
|
9. |
J. Yin, K. Wei, J. Zhang, S. Liu, X. Wang et al., MXene-based film electrode and all-round hydrogel electrolyte for flexible all-solid supercapacitor with extremely low working temperature. Cell Rep. Phys. Sci. 3, 100893 ( 2022). https://doi.org/10.1016/j.xcrp.2022.100893
|
10. |
J. Liu, J. Huang, Q. Cai, Y. Yang, W. Luo et al., Design of slidable polymer networks: a rational strategy to stretchable, rapid self-healing hydrogel electrolytes for flexible supercapacitors. ACS Appl. Mater. Interfaces 12, 20479-20489 ( 2020). https://doi.org/10.1021/acsami.0c03224
|
11. |
Y. Zhou, C. Wan, Y. Yang, H. Yang, S. Wang et al., Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv. Funct. Mater. 29, 1806220 ( 2019). https://doi.org/10.1002/adfm.201806220
|
12. |
|
13. |
Y.-R. Gao, J.-F. Cao, Y. Shu, J.-H. Wang, Research progress of ionic liquids-based gels in energy storage, sensors and antibacterial. Green Chem. Eng. 2, 368-383 ( 2021). https://doi.org/10.1016/j.gce.2021.07.012
|
14. |
S. Zheng, W. Li, Y. Ren, Z. Liu, X. Zou et al., Moisture-wicking, breathable, and intrinsically antibacterial electronic skin based on dual-gradient poly(ionic liquid) nanofiber membranes. Adv. Mater. 34, e2106570 ( 2022). https://doi.org/10.1002/adma.202106570
|
15. |
H. Lee, A. Erwin, M.L. Buxton, M. Kim, A.V. Stryutsky et al., Shape persistent, highly conductive ionogels from ionic liquids reinforced with cellulose nanocrystal network. Adv. Funct. Mater. 31, 2103083 ( 2021). https://doi.org/10.1002/adfm.202103083
|
16. |
|
17. |
F. Xie, X. Gao, Y. Yu, F. Lu, L. Zheng, Dually cross-linked single network poly(ionic liquid)/ionic liquid ionogels for a flexible strain-humidity bimodal sensor. Soft Matter 17, 10918-10925 ( 2021). https://doi.org/10.1039/d1sm01453f
|
18. |
T. Lin, S. Li, Y. Hu, L. Sheng, X. Chen et al., Ultrastretchable and adhesive agarose/Ti 3C 2T x-crosslinked-polyacrylamide double-network hydrogel for strain sensor. Carbohydr. Polym. 290, 119506 ( 2022). https://doi.org/10.1016/j.carbpol.2022.119506
|
19. |
L.-W. Xia, R. Xie, X.-J. Ju, W. Wang, Q. Chen et al., Nano-structured smart hydrogels with rapid response and high elasticity. Nat. Commun. 4, 2226 ( 2013). https://doi.org/10.1038/ncomms3226
|
20. |
Z. Wang, H. Zhou, D. Liu, X. Chen, D. Wang et al., A structural gel composite enabled robust underwater mechanosensing strategy with high sensitivity. Adv. Funct. Mater. 32, 2201396 ( 2022). https://doi.org/10.1002/adfm.202201396
|
21. |
|
22. |
J.-N. Liu, Q. He, M.-Y. Pan, K. Du, C.-B. Gong et al., An energy-saving, bending sensitive, and self-healing PVA-borax-IL ternary hydrogel electrolyte for visual flexible electrochromic strain sensors. J. Mater. Chem. A 10, 25118-25128 ( 2022). https://doi.org/10.1039/D2TA06667J
|
23. |
J.J. Paik, B. Jang, S. Nam, L.J. Guo, A transparent poly(vinyl alcohol) ion-conducting organohydrogel for skin-based strain-sensing applications. Adv. Healthc. Mater. 12, e2300076 ( 2023). https://doi.org/10.1002/adhm.202300076
|
24. |
S. Wu, L. Tang, Y. Xu, J. Yao, G. Tang et al., A self-powered flexible sensing system based on a super-tough, high ionic conductivity supercapacitor and a rapid self-recovering fully physically crosslinked double network hydrogel. J. Mater. Chem. C 10, 3027-3035 ( 2022). https://doi.org/10.1039/D1TC04514H
|
25. |
J. Huang, S. Han, J. Zhu, Q. Wu, H. Chen et al., Mechanically stable all flexible supercapacitors with fracture and fatigue resistance under harsh temperatures. Adv. Funct. Mater. 32, 2270200 ( 2022). https://doi.org/10.1002/adfm.202270200
|
26. |
H. Fang, J. Wang, L. Li, L. Xu, Y. Wu et al., A novel high-strength poly(ionic liquid)/PVA hydrogel dressing for antibacterial applications. Chem. Eng. J. 365, 153-164 ( 2019). https://doi.org/10.1016/j.cej.2019.02.030
|
27. |
Y. Li, J. Yan, Y. Liu, X.-M. Xie, Super tough and intelligent multibond network physical hydrogels facilitated by Ti 3C 2T x MXene nanosheets. ACS Nano 16, 1567-1577 ( 2022). https://doi.org/10.1021/acsnano.1c10151
|
28. |
X. Suo, X. Cui, L. Yang, N. Xu, Y. Huang et al., Synthesis of ionic ultramicroporous polymers for selective separation of acetylene from ethylene. Adv. Mater. 32, e1907601 ( 2020). https://doi.org/10.1002/adma.201907601
|
29. |
W. Zhao, J. Jiang, W. Chen, Y. He, T. Lin et al., Radiation synthesis of rapidly self-healing, durable, and flexible poly(ionic liquid)/MXene gels with anti-freezing property for multi-functional strain sensors. Chem. Eng. J. 468, 143660 ( 2023). https://doi.org/10.1016/j.cej.2023.143660
|
30. |
M. Shi, T. Lin, Y. Wang, Y. Hu, J. Peng et al., One-step radiation synthesis of novel star-shaped polymeric ionic liquid-POSS gel electrolytes with high ionic conductivity and mechanical properties for supercapacitor. J. Mater. Sci. 55, 16347-16359 ( 2020). https://doi.org/10.1007/s10853-020-05162-9
|
31. |
S. Zhang, Y. Zhang, B. Li, P. Zhang, L. Kan et al., One-step preparation of a highly stretchable, conductive, and transparent poly(vinyl alcohol)-phytic acid hydrogel for casual writing circuits. ACS Appl. Mater. Interfaces 11, 32441-32448 ( 2019). https://doi.org/10.1021/acsami.9b12626
|
32. |
O. Hu, J. Lu, G. Chen, K. Chen, J. Gu et al., An antifreezing, tough, rehydratable, and thermoplastic poly(vinyl alcohol)/sodium alginate/poly(ethylene glycol) organohydrogel electrolyte for flexible supercapacitors. ACS Sustainable Chem. Eng. 9, 9833-9845 ( 2021). https://doi.org/10.1021/acssuschemeng.1c02464
|
33. |
X. Liu, J. Qin, J. Wang, Y. Chen, G. Miao et al., Robust conductive organohydrogel strain sensors with wide range linear sensing, UV filtering, anti-freezing and water-retention properties. Colloids Surf. A 632, 127823 2022). https://doi.org/10.1016/j.colsurfa.2021.127823
|
34. |
L. Mao, S. Hu, Y. Gao, L. Wang, W. Zhao et al., Biodegradable and electroactive regenerated bacterial cellulose/MXene (Ti 3C 2t x) composite hydrogel as wound dressing for accelerating skin wound healing under electrical stimulation. Adv. Healthc. Mater. 9, e2000872 ( 2020). https://doi.org/10.1002/adhm.202000872
|
35. |
Y. Zhu, J. Liu, T. Guo, J.J. Wang, X. Tang et al., Multifunctional Ti 3C 2T x MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding. ACS Nano 15, 1465-1474 ( 2021). https://doi.org/10.1021/acsnano.0c08830
|
36. |
H. Qiao, P. Qi, X. Zhang, L. Wang, Y. Tan et al., Multiple weak H-bonds lead to highly sensitive, stretchable, self-adhesive, and self-healing ionic sensors. ACS Appl. Mater. Interfaces 11, 7755-7763 ( 2019). https://doi.org/10.1021/acsami.8b20380
|
37. |
T. Li, Y. Wang, S. Li, X. Liu, J. Sun, Mechanically robust, elastic, and healable ionogels for highly sensitive ultra-durable ionic skins. Adv. Mater. 32, e2002706 ( 2020). https://doi.org/10.1002/adma.202002706
|
38. |
Y. Yu, P. Yi, W. Xu, X. Sun, G. Deng et al., Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 14, 77 ( 2022). https://doi.org/10.1007/s40820-022-00819-3
|
39. |
H. Sun, Y. Zhao, S. Jiao, C. Wang, Y. Jia et al., Environment tolerant conductive nanocomposite organohydrogels as flexible strain sensors and power sources for sustainable electronics. Adv. Funct. Mater. 31, 2101696 ( 2021). https://doi.org/10.1002/adfm.202101696
|
40. |
A. Chae, G. Murali, S.-Y. Lee, J. Gwak, S.J. Kim et al., Highly oxidation-resistant and self-healable MXene-based hydrogels for wearable strain sensor. Adv. Funct. Mater. 33, 2370144 ( 2023). https://doi.org/10.1002/adfm.202370144
|
41. |
J. Qin, J. Guo, Q. Xu, Z. Zheng, H. Mao et al., Synthesis of pyrrolidinium-type poly(ionic liquid) membranes for antibacterial applications. ACS Appl. Mater. Interfaces 9, 10504-10511 ( 2017). https://doi.org/10.1021/acsami.7b00387
|
42. |
X. Liu, L. Chang, L. Peng, R. Bai, Y. Wei et al., Poly(ionic liquid)-based efficient and robust antiseptic spray. ACS Appl. Mater. Interfaces 13, 48358-48364 ( 2021). https://doi.org/10.1021/acsami.1c11481
|
43. |
H. Wang, J. Xu, K. Li, Y. Dong, Z. Du et al., Highly stretchable, self-healable, and self-adhesive ionogels with efficient antibacterial performances for a highly sensitive wearable strain sensor. J. Mater. Chem. B 10, 1301-1307 ( 2022). https://doi.org/10.1039/d2tb00041e
|
44. |
A. Arabi Shamsabadi, M. Sharifian Gh, B. Anasori, M. Soroush, Antimicrobial mode-of-action of colloidal Ti 3C 2T x MXene nanosheets. ACS Sustainable Chem. Eng. 6, 16586-16596 ( 2018). https://doi.org/10.1021/acssuschemeng.8b03823
|
45. |
J. Zhang, W. Xue, Y. Dai, L. Wu, B. Liao et al., Double network hydrogel sensors with high sensitivity in large strain range. Macromol. Mater. Eng. 306(12), 2100486 ( 2021). https://doi.org/10.1002/mame.202100486
|
46. |
M. Pi, S. Qin, S. Wen, Z. Wang, X. Wang et al., Rapid gelation of tough and anti-swelling hydrogels under mild conditions for underwater communication. Adv. Funct. Mater. 33, 2210188 ( 2023). https://doi.org/10.1002/adfm.202210188
|
47. |
J. Liu, H. Wang, T. Liu, Q. Wu, Y. Ding et al., Multimodal hydrogel-based respiratory monitoring system for diagnosing obstructive sleep apnea syndrome. Adv. Funct. Mater. 32, 2204686 ( 2022). https://doi.org/10.1002/adfm.202204686
|
48. |
J. Huang, S. Peng, J. Gu, G. Chen, J. Gao et al., Self-powered integrated system of a strain sensor and flexible all-solid-state supercapacitor by using a high performance ionic organohydrogel. Mater. Horiz. 7, 2085-2096 ( 2020). https://doi.org/10.1039/D0MH00100G
|
49. |
S. Long, Y. Feng, F. He, J. Zhao, T. Bai et al., Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators. Nano Energy 85, 105973 2021). https://doi.org/10.1016/j.nanoen.2021.105973
|
50. |
M.Y. Bhat, N. Yadav, S.A. Hashmi, A high performance flexible gel polymer electrolyte incorporated with suberonitrile as additive for quasi-solid carbon supercapacitor. Mater. Sci. Eng. B 262, 114721 2020). https://doi.org/10.1016/j.mseb.2020.114721
|
51. |
Q. Hu, S. Cui, K. Sun, X. Shi, M. Zhang et al., An antifreezing and thermally stable hydrogel electrolyte for high-performance all-in-one flexible supercapacitor. J. Energy Storage 50, 104231 2022). https://doi.org/10.1016/j.est.2022.104231
|
52. |
H. Peng, X. Gao, K. Sun, X. Xie, G. Ma et al., Physically cross-linked dual-network hydrogel electrolyte with high self-healing behavior and mechanical strength for wide-temperature tolerant flexible supercapacitor. Chem. Eng. J. 422, 130353 ( 2021). https://doi.org/10.1016/j.cej.2021.130353
|
53. |
Y. Zhao, B. Zhang, B. Yao, Y. Qiu, Z. Peng et al., Hierarchically structured stretchable conductive hydrogels for high-performance wearable strain sensors and supercapacitors. Matter 3, 1196-1210 ( 2020). https://doi.org/10.1016/j.matt.2020.08.024
|
54. |
|
55. |
J. Lu, J. Gu, O. Hu, Y. Fu, D. Ye et al., Highly tough, freezing-tolerant, healable and thermoplastic starch/poly(vinyl alcohol) organohydrogels for flexible electronic devices. J. Mater. Chem. A 9, 18406-18420 ( 2021). https://doi.org/10.1039/D1TA04336F
|
56. |
C. Cai, W. Zhou, Y. Fu, Bioinspired MXene nacre with mechanical robustness for highly flexible all-solid-state photothermo-supercapacitor. Chem. Eng. J. 418, 129275 ( 2021). https://doi.org/10.1016/j.cej.2021.129275
|
57. |
Q. Liu, J. Zhou, C. Song, X. Li, Z. Wang et al., 2.2V high performance symmetrical fiber-shaped aqueous supercapacitors enabled by “water-in-salt” gel electrolyte and N-doped graphene fiber. Energy Storage Mater. 24, 495-503 ( 2020). https://doi.org/10.1016/j.ensm.2019.07.008
|
58. |
C. Ma, D. Hou, J. Jiang, Y. Fan, X. Li et al., Elucidating the synergic effect in nanoscale MoS 2/TiO 2 heterointerface for Na-ion storage. Adv. Sci. 9, e2204837 ( 2022). https://doi.org/10.1002/advs.202204837
|
59. |
E. Cevik, S.T. Gunday, A. Bozkurt, R. Amine, K. Amine, Bio-inspired redox mediated electrolyte for high performance flexible supercapacitor applications over broad temperature domain. J. Power. Sources 474, 228544 2020). https://doi.org/10.1016/j.jpowsour.2020.228544
|