Original article

Overview of Cryogenic CMOS Based Computing Systems

  • YUHAO SHU 1, - ,
  • BIN NING 1, - ,
  • YIFEI LI 1, - ,
  • ZHAODONG LYU 1 ,
  • JINCHENG WANG 1 ,
  • LINTAO LAN ,
  • YUXIN ZHOU 1 ,
  • MENGRU ZHANG 2 ,
  • HONGTU ZHANG 1 ,
  • YAJUN HA , 1, 3
Expand
  • 1 School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • 2 State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Fudan University, Shanghai 200433, China
  • 3 Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai 201210, China
+ CORRESPONDING AUTHOR: YAJUN HA (e-mail: ).

- Yuhao Shu, Bin Ning, and Yifei Li contributed equally to this work

Revised date: 2024-11-20

  Accepted date: 2024-11-20

  Online published: 2025-01-09

Supported by

the National Natural Science Foundation of China(62220106011)

Abstract

As integrated circuits advance into the post-Moore era, the improvement of computing performance encounters several challenges, making it difficult to meet the ever-growing computing demands. Cryogenic complementary metal oxide semiconductor (CMOS) based computing systems have emerged as a promising solution for overcoming the existing computing performance bottleneck. By cooling the circuitry to cryogenic temperatures, device leakage and wire resistance can be significantly reduced, leading to further improvements in energy efficiency and performance. Here, we conduct a comprehensive review of the cryogenic CMOS based computing systems across multiple optimization layers, including the CMOS process, modeling, electronic design automation (EDA), circuits, and architecture. Moreover, this review identifies potential future works and applications.

Cite this article

YUHAO SHU , BIN NING , YIFEI LI , ZHAODONG LYU , JINCHENG WANG , LINTAO LAN , YUXIN ZHOU , MENGRU ZHANG , HONGTU ZHANG , YAJUN HA . Overview of Cryogenic CMOS Based Computing Systems[J]. Integrated Circuits and Systems, 2024 , 1(4) : 167 -177 . DOI: 10.23919/ICS.2024.3505839

[1]
G. E. Moore et al., “Progress in digital integrated electronics,” in Proc. 1975 IEEE Int. Electron Devices Meeting, 1975, pp. 11-13.

[2]
X. Xu et al., “Scaling for edge inference of deep neural networks,”Nature Electron., vol. 1, no. 4, pp. 216-222, 2018.

[3]
M. Horowitz,“1.1 Computing’s energy problem (and what we can do about it),” in Proc. 2014 IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2014, pp. 10-14.

[4]
K. Radhakrishnan, M. Swaminathan, and B. K. Bhattacharyya, “Power delivery for high performance microprocessors—challenges, solutions, and future trends,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 11, no. 4, pp. 655-671, Apr. 2021.

[5]
H. Esmaeilzadeh, E. Blem, R. St Amant, K. Sankaralingam, and D. Burger, “Dark silicon and the end of multicore scaling,” in Proc. 38th Annu. Int. Symp. Comput. Archit., 2011, pp. 365-376.

[6]
H. Zhang, Y. Shu, Q. Deng, H. Sun, W. Zhao, and Y. Ha,“WDVRRAM: A 0.25-1.2 V., 2.6- 76 POPS/W charge-domain in-memory-computing binarized CNN accelerator for dynamic AIoT workloads, IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 70, no. 10, pp. 3964-3977, Oct. 2023.

[7]
H. Zhang, Y. Shu, W. Jiang, Z. Yin, W. Zhao, and Y. Ha,“A 55 nm, 0.4 V 5526-TOPS/W compute-in-memory binarized CNN accelerator for AIoT applications,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 68, no. 5, pp. 1695-1699, May 2021.

[8]
A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou, “Memory devices and applications for in-memory computing,” Nature Nanotechnol., vol. 15, no. 7, pp. 529-544, 2020.

[9]
D. Ielmini and H. -S. P. Wong, “In-memory computing with resistive switching devices,” Nature Electron., vol. 1, no. 6, pp. 333-343, 2018.

[10]
H. L. Chiang et al., “Cold CMOS as a power-performance-reliability booster for advanced FinFETs,” in Proc. 2020 IEEE Symp. VLSI Technol., 2020, pp. 1-2.

[11]
E. Charbon et al., “Cryo-CMOS for quantum computing,” in Proc. 2016 IEEE Int. Electron Devices Meeting, 2016, pp. 13.5. 1-13.5.4.

[12]
E. Charbon et al., “15.5 Cryo-CMOS circuits and systems for scalable quantum computing,” in Proc. 2017 IEEE Int. Solid-State Circuits Conf., Feb. 2017, pp. 264-265.

[13]
B. Patra et al., “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits, vol. 53, no. 1, pp. 309-321, Jan. 2018.

[14]
A. Ruffino, T.-Y. Yang, J. Michniewicz, Y. Peng, E. Charbon, and M. F. Gonzalez-Zalba, “A cryo-CMOS chip that integrates silicon quantum dots and multiplexed dispersive readout electronics,” Nature Electron., vol. 5, no. 1, pp. 53-59, 2022.

[15]
L. Vandersypen and A. van Leeuwenhoek, “1.4 quantum computing-the next challenge in circuit and system design,” in Proc. 2017 IEEE Int. Solid-State Circuits Conf., Feb. 2017, pp. 24-29.

[16]
G. Zhang, H. Lin, and C. Wang,“34.5 A. calibration-free 12. 8-16.5 GHz cryogenic CMOS VCO with 202 dBc/Hz FoM for classic-quantum interface,” in Proc. 2023 IEEE Int. Solid-State Circuits Conf., 2023, pp. 512-514.

[17]
Y. Peng, A. Ruffino, and E. Charbon, “A cryogenic broadband Sub-1-dB NF CMOS low noise amplifier for quantum applications,” IEEE J. Solid-State Circuits, vol. 56, no. 7, pp. 2040-2053, Jul. 2021.

[18]
Y. Guo et al., “A polar-modulation-based cryogenic transmon qubit state controller in 28 nm bulk CMOS for superconducting quantum computing,” IEEE J. Solid-State Circuits, vol. 58, no. 11, pp. 3060-3073, Nov. 2023.

[19]
Y. Guo et al., “Cryogenic CMOS RF circuits: A. promising approach for large-scale quantum computing,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 71, no. 3, pp. 1619-1625, Mar. 2024.

[20]
S. J. Pauka, K. Das, R. Kalra, A. Moini, and D. J. Reilly, “A cryogenic CMOS chip for generating control signals for multiple qubits,” Nature Electron., vol. 4, no. 1, pp. 64-70, Jan. 2021.

[21]
J. Yoo et al., “Design and characterization of a 4-mW/Qubit 28-nm Cryo-CMOS integrated circuit for full control of a superconducting quantum processor unit cell,” IEEE J. Solid-State Circuits, vol. 58, no. 11, pp. 3044-3059, Nov. 2023.

[22]
R. Acharya et al., “Multiplexed superconducting qubit control at millikelvin temperatures with a low-power cryo-CMOS multiplexer,” Nature Electron., vol. 6, no. 11, pp. 900-909, 2023.

[23]
J. Yoo et al., “34.2 A. 28-nm Bulk-CMOS IC for full control of a superconducting quantum processor unit-cell,” in Proc. 2023 IEEE Int. Solid-State Circuits Conf., 2023, pp. 506-508.

[24]
K. Kang et al., “A 40-nm Cryo-CMOS quantum controller IC for superconducting qubit,” IEEE J. Solid-State Circuits, vol. 57, no. 11, pp. 3274-3287, Nov. 2022.

[25]
Y. Zhang et al., “Characterization and modeling of native MOS-FETs down to 4.2 K,” IEEE Trans. Electron Devices, vol. 68, no. 9, pp. 4267-4273, Sep. 2021.

[26]
R. M. Incandela, L. Song, H. Homulle, E. Charbon, A. Vladimirescu, and F. Sebastiano, “Characterization and compact modeling of nanometer CMOS transistors at deep-cryogenic temperatures,” IEEE J. Electron Devices Soc., vol. 6, pp. 996-1006, 2018.

[27]
B. C. Paz et al., “Variability evaluation of 28 nm FD-SOI technology at cryogenic temperatures down to 100mK for quantum computing,” in Proc. 2020 IEEE Symp. VLSI Technol., 2020, pp. 1-2.

[28]
DARPA,“Board agency announcement: Low temperature logic technology,” 2021. [Online].

[29]
R. Saligram, A. Gaidhane, Y. K. Cao, S. Datta, and A. Raychowdhury, “Cooling the chaos: Mitigating the effect of threshold voltage variation in cryogenic CMOS memories,” in Proc. 29th ACM/IEEE Int. Symp. Low Power Electron. Des., New York, NY, USA, 2024, pp. 1-6.

[30]
A. Kabaoğlu, N. Ş. Solmaz, S. İlik,Y. Uzun and M. B. Yelten, "Statistical MOSFET modeling methodology for cryogenic conditions", IEEE Trans. Electron Devices, vol. 66, no. 1, pp. 66-72, Jan. 2019.

[31]
M. Shintani, T. Iwasaki, and T. Sato, “Gaussian process-based device model toward a unified current model across room to cryogenic temperatures,” in Proc. IEEE 36th Int. Conf. Microelectronic Test Structures, 2024, pp. 1-5.

[32]
Z. Wang et al., “Temperature-driven gate geometry effects in nanoscale cryogenic MOSFETs,” IEEE Electron Device Lett., vol. 41, no. 5, pp. 661-664, May 2020.

[33]
Z. Tang et al., “Cryogenic CMOS RF device modeling for scalable quantum computer design,” IEEE J. Electron Devices Soc., vol. 10, pp. 532-539, 2022.

[34]
A. Beckers, F. Jazaeri, A. Ruffino, C. Bruschini, A. Baschirotto, and C. Enz,“Cryogenic characterization of 28 nm bulk CMOS technology for quantum computing,” in Proc. IEEE 47th Eur. Solid-State Device Res. Conf., 2017, pp. 62-65.

[35]
A. Beckers, F. Jazaeri, A. Grill, S. Narasimhamoorthy, B. Parvais, and C. Enz, “Physical model of low-temperature to cryogenic threshold voltage in MOSFETs,” IEEE J. Electron Devices Soc., vol. 8, pp. 780-788, 2020.

[36]
W. Manzoor, A. K. Dutta, G. Pahwa, N. Manzoor, C. Hu, and Y. Singh Chauhan, “Extending standard BSIM-BULK model to cryo-genic temperatures,” IEEE Trans. Electron Devices, vol. 71, no. 8, pp. 4510-4516, Aug. 2024.

[37]
H.-C. Han, F. Jazaeri, A. D’Amico, A. Baschirotto, E. Charbon, and C. Enz,“Cryogenic characterization of 16 nm FinFET technology for quantum computing,” in Proc. -IEEE 51st Eur. Solid-State Device Res. Conf., 2021, pp. 71-74.

[38]
A. Chabane et al., “Cryogenic characterization and modeling of 14 nm bulk FinFET technology,” in Proc. IEEE 47th Eur. Solid State Circuits Conf., 2021, pp. 67-70.

[39]
E. Schriek, F. Sebastiano, and E. Charbon, “A Cryo-CMOS digital cell library for quantum computing applications,” IEEE Solid-State Circuits Lett., vol. 3, pp. 310-313, 2020.

[40]
V. M. van Santen et al., “Design automation for cryogenic CMOS circuits,” in Proc. 60th ACM/IEEE Des. Automat. Conf., 2023, pp. 1-6.

[41]
B. Hien et al., “Technology mapping for cryogenic CMOS circuits,” in Proc. 2024 IEEE Comput. Soc. Annu. Symp. VLSI, 2024, pp. 272-277.

[42]
R. Joshi, J. Timmerwilke, K. Tien, M. Yeck, and S. Chakraborty,“A 0.31 V vmin cryogenic SRAM in 14 nm FinFET for Quantum Computing,” in Proc. 2022 IEEE Symp. VLSI Technol. Circuits, 2022, pp. 232-233.

[43]
V. P.-H. Hu et al., “High-density and high-speed 4T FinFET SRAM for Cryogenic computing,” in Proc. 2021 IEEE Int. Electron Devices Meeting, Dec. 2021, pp. 8.6. 1-8.6.4.

[44]
W. Chakraborty et al., “Pseudo-static 1T capacitorless DRAM using 22 nm FDSOI for cryogenic cache memory,” in Proc. 2021 IEEE Int. Electron Devices Meeting, 2021, pp. 40.1. 1-40.1.4.

[45]
E. Garzón, Y. Greenblatt, O. Harel, M. Lanuzza, and A. Teman, “Gain-cell embedded DRAM under cryogenic operation—a first study,” IEEE Trans. Very Large Scale Integr. Syst., vol. 29, no. 7, pp. 1319-1324, Jul. 2021.

[46]
R. Saligram, S. Datta, and A. Raychowdhury,“CryoMem: A. 4K-300K 1.3GHz eDRAM macro with hybrid 2T-Gain-Cell in a 28 nm logic process for cryogenic applications,” in Proc. 2021 IEEE Custom Integr. Circuits Conf., Apr. 2021, pp.1-2.

[47]
Y. Shu, H. Zhang, H. Sun, Q. Deng, and Y. Ha,“CSDB-eDRAM: A 16 Kb energy-efficient 4T CSDB gain cell eDRAM with over 16.6s retention time and 49.23uW/Kb at 4.2 K for cryogenic computing,” in Proc. 2023 IEEE Int. Symp. Circuits Syst., 2023, pp. 1-5.

[48]
R. A. Damsteegt, R. W. Overwater, M. Babaie, and F. Sebastiano, “A benchmark of Cryo-CMOS embedded SRAM/DRAMs in 40-nm CMOS,” IEEE J. Solid-State Circuits, vol. 59, no. 7, pp. 2042-2054, Jul. 2024.

[49]
C. Ahn, S. Kim, T. Gokmen, O. Dial, M. Ritter, and H.-S. P. Wong, “Temperature-dependent studies of the electrical properties and the conduction mechanism of HfOx-based RRAM,” in Proc. IEEE Tech. Prog. 2014 Int. Symp. VLSI Technol., Syst. Appl., 2014, pp. 1-2.

[50]
S. Blonkowski and T. Cabout, “Bipolar resistive switching from liquid helium to room temperature,” J. Phys. D: Appl. Phys., vol. 48, no. 34, Jul. 2015, Art. no. 345101.

[51]
J. Shang et al., “Thermally stable transparent resistive random access memory based on all-oxide heterostructures,” Adv. Funct. Mater., vol. 24, no. 15, pp. 2171-2179, 2014.

[52]
G. E. Rowlands et al., “A cryogenic spin-torque memory element with precessional magnetization dynamics,” Sci. Rep., vol. 9, no. 803, Jan. 2019, Art. no. 345101.

[53]
E. Garzón, L. Yavits, A. Teman, and M. Lanuzza, “STT-MRAM technology for energy-efficient cryogenic memory applications,” in Proc. IEEE 14th Latin Amer. Symp. Circuits Syst., 2023, pp. 1-4.

[54]
Z. Wang et al., “Cryogenic characterization of antiferroelectric zirconia down to 50 mK,” in Proc. 2019 IEEE Device Res. Conf., 2019, pp. 85-86.

[55]
W.-C. Wang et al., “Cool-CIM: Cryogenic operation of analog compute-in-memory for improved power-efficiency,” in Proc. 2023 IEEE Int. Electron Devices Meeting, 2023, pp. 1-4.

[56]
D. S. Kang and S. Yu, “Time-based compute-in-memory for cryo- genic neural network with successive approximation register time-to- digital converter,” IEEE J. Explor. Solid-State Comput., vol. 8, no. 2, pp. 128-133, Dec. 2022.

[57]
S. Alam, J. Hutchins, M. S. Hossain, K. Ni, V. Narayanan, and A. Aziz, “Cryogenic in-memory matrix-vector multiplication using ferroelectric superconducting quantum interference device (FE-SQUID),” in Proc. 60th ACM/IEEE Des. Automat. Conf., 2023, pp. 1-6.

[58]
Y. Shu et al., “eCIMC: A 603.1-TOPS/W eDRAM-Based cryogenic in- memory computing accelerator supporting boolean/convolutional operations,” IEEE J. Solid-State Circuits, vol. 59, no. 11, pp. 3827-3839, Nov. 2024.

[59]
P. Wang, X. Peng, W. Chakraborty, A. I. Khan, S. Datta, and S. Yu, “Cryogenic benchmarks of embedded memory technologies for recur- rent neural network based quantum error correction,” in Proc. 2020 IEEE Int. Electron Devices Meeting. 2020, pp. 38.5. 1-38.5.4.

[60]
P. Wang, X. Peng, W. Chakraborty, A. Khan, S. Datta, and S. Yu, “Cryogenic performance for compute-in-memory based deep neural network accelerator,” in Proc. 2021 IEEE Int. Symp. Circuits Syst., 2021, pp. 1-4.

[61]
D. S. Kang and S. Yu, “Design-technology co-optimization for cryo- genic tensor processing unit,” in Proc. 2022 IEEE Asia Pacific Conf. Circuits Syst., 2022, pp. 1-4.

[62]
R. Saligram, D. Prasad, D. Pietromonaco, A. Raychowdhury, and B. Cline,“A 64-bit arm CPU at cryogenic temperatures: Design technol- ogy co-optimization for power and performance,” in Proc. 2021 IEEE Custom Integr. Circuits Conf., 2021, pp. 1-2.

[63]
G.-H. Lee, D. Min, I. Byun, and J. Kim, “Cryogenic computer archi- tecture modeling with memory-side case studies,” in Proc. ACM/IEEE 46th Annu. Int. Symp. Comput. Archit., 2019, pp. 774-787.

[64]
D. Min, I. Byun, G.-H. Lee, S. Na, and J. Kim, “CryoCache:A. fast, large, and cost-effective cache architecture for cryogenic com- puting,” in Proc. 25th Int. Conf. Archit. Support Program. Lang. Oper. Syst.. New York, NY, USA: Assoc. Comput. Mach., Mar. 2020, pp. 449-464.

[65]
I. Byun, D. Min, G.-h. Lee, S. Na, and J. Kim, “CryoCore: A fast and dense processor architecture for cryogenic computing,” in Proc. ACM/IEEE 47th Annu. Int. Symp. Comput. Archit., 2020, pp. 335-348.

[66]
D. Min, Y. Chung, I. Byun, J. Kim, and J. Kim, “CryoWire: Wire- driven microarchitecture designs for cryogenic computing,” in Proc. 27th ACM Int. Conf. Archit. Support Program. Lang. Operating Syst., 2022, pp. 903-917.

Outlines

/