诊断学理论与实践 ›› 2016, Vol. 15 ›› Issue (06): 637-640.doi: 10.16150/j.1671-2870.2016.06.019
• 综述 • 上一篇
俞夏莲, 王伟铭
收稿日期:
2016-06-15
出版日期:
2016-12-25
发布日期:
2022-07-27
通讯作者:
王伟铭 E-mail: wweiming@medmail.com.cn
基金资助:
Received:
2016-06-15
Online:
2016-12-25
Published:
2022-07-27
中图分类号:
俞夏莲, 王伟铭. IgA肾病中半乳糖缺乏的IgA1及其相关标志物的研究进展[J]. 诊断学理论与实践, 2016, 15(06): 637-640.
[1] Russell MW, Mestecky J, Julian BA, et al.IgA-associated renal diseases: antibodies to environmental antigens in sera and deposition of immunoglobulins and antigens in glomeruli[J]. J Clin Immunol,1986,6(1):74-86. [2] Moriyama T, Tanaka K, Iwasaki C, et al.Prognosis in IgA nephropathy: 30-year analysis of 1,012 patients at a single center in Japan[J]. PLoS One,2014,9(3):e91756. [3] Czerkinsky C, Koopman WJ, Jackson S, et al.Circulating immune complexes and immunoglobulin A rheumatoid factor in patients with mesangial immunoglobulin A nephropathies[J]. J Clin Invest,1986,77(6):1931-1938. [4] Boyd JK, Cheung CK, Molyneux K, et al.An update on the pathogenesis and treatment of IgA nephropathy[J]. Kidney Int,2012,81(9):833-843. [5] Allen AC, Bailey EM, Brenchley PE, et al.Mesangial IgA1 in IgA nephropathy exhibits aberrant O-glycosylation: observations in three patients[J]. Kidney Int,2001, 60(3):969-973. [6] Suzuki H, Kiryluk K, Novak J, et al.The pathophysiology of IgA nephropathy[J]. J Am Soc Nephrol,2011,22(10):1795-1803. [7] Tomana M, Novak J, Julian BA, et al.Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies[J]. J Clin Invest,1999,104(1):73-81. [8] Eison TM, Hastings MC, Moldoveanu Z, et al.Association of IgG co-deposition with serum levels of galactose-deficient IgA1 in pediatric IgA nephropathy[J]. Clin Nephrol,2012,78(6):465-469. [9] Endo M, Ohi H, Ohsawa I, et al.Glomerular deposition of mannose-binding lectin (MBL) indicates a novel mechanism of complement activation in IgA nephropathy[J]. Nephrol Dial Transplant,1998,13(8):1984-1990. [10] Berthoux F, Suzuki H, Thibaudin L, et al.Autoantibodies targeting galactose-deficient IgA1 associate with progression of IgA nephropathy[J]. J Am Soc Nephrol,2012,23(9):1579-1587. [11] Watanabe K, Sugai M, Nambu Y, et al.Requirement for Runx proteins in IgA class switching acting downstream of TGF-beta 1 and retinoic acid signaling[J]. J Immunol,2010,184(6):2785-2792. [12] Launay P, Grossetête B, Arcos-Fajardo M, et al.Fcalpha receptor (CD89) mediates the development of immunoglobulin A (IgA) nephropathy (Berger's disease). Evi-dence for pathogenic soluble receptor-Iga complexes in patients and CD89 transgenic mice[J]. J Exp Med,2000, 191(11):1999-2009. [13] Moldoveanu Z, Wyatt RJ, Lee JY, et al.Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels[J]. Kidney Int,2007,71(11):1148-1154. [14] Jiang M, Jiang X, Rong L, et al.Serum galactose-deficient IgA1 levels in children with IgA nephropathy[J]. Int J Clin Exp Med,2015,8(5):7861-7866. [15] Shimozato S, Hiki Y, Odani H, et al.Serum under-galactosylated IgA1 is increased in Japanese patients with IgA nephropathy[J]. Nephrol Dial Transplant,2008,23(6):1931-1939. [16] Berthelot L, Robert T, Vuiblet V, et al.Recurrent IgA nephropathy is predicted by altered glycosylated IgA, autoantibodies and soluble CD89 complexes[J]. Kidney Int,2015,88(4):815-822. [17] Kiryluk K, Moldoveanu Z, Sanders JT, et al.Aberrant glycosylation of IgA1 is inherited in both pediatric IgA nephropathy and Henoch-Schönlein purpura nephritis[J]. Kidney Int,2011,80(1):79-87. [18] Camilla R, Suzuki H, Daprà V, et al.Oxidative stress and galactose-deficient IgA1 as markers of progression in IgA nephropathy[J]. Clin J Am Soc Nephrol,2011,6(8):1903-1911. [19] Lau KK, Wyatt RJ, Moldoveanu Z, et al.Serum levels of galactose-deficient IgA in children with IgA nephropathy and Henoch-Schönlein purpura[J]. Pediatr Nephrol,2007, 22(12):2067-2072. [20] Hastings MC, Moldoveanu Z, Julian BA, et al.Galactose-deficient IgA1 in African Americans with IgA nephropathy: serum levels and heritability[J]. Clin J Am Soc Nephrol,2010,5(11):2069-2074. [21] Hastings MC, Afshan S, Sanders JT, et al.Serum galactose-deficient IgA1 level is not associated with proteinuria in children with IgA nephropathy[J]. Int J Nephrol,2012,2012:315467. [22] Berthoux F, Suzuki H, Thibaudin L, et al.Autoantibodies targeting galactose-deficient IgA1 associate with progression of IgA nephropathy[J]. J Am Soc Nephrol,2012,23(9):1579-1587. [23] Hastings MC, Moldoveanu Z, Julian BA, et al.Galactose-deficient IgA1 in African Americans with IgA nephropathy: serum levels and heritability[J]. Clin J Am Soc Nephrol,2010,5(11):2069-2074. [24] Zhao N, Hou P, Lv J, et al.The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression[J]. Kidney Int,2012, 82(7):790-796. [25] Suzuki Y, Matsuzaki K, Suzuki H, et al.Serum levels of galactose-deficient immunoglobulin(Ig) A1 and related immune complex are associated with disease activity of IgA nephropathy[J]. Clin Exp Nephrol,2014,18(5):770-777. [26] Yanagawa H, Suzuki H, Suzuki Y, et al.A panel of serum biomarkers differentiates IgA nephropathy from other renal diseases[J]. PLoS One,2014,9(5):e98081. [27] Stuchlová Horynová M, Raška M, Clausen H, et al.Aberrant O-glycosylation and anti-glycan antibodies in an autoimmune disease IgA nephropathy and breast adenocarcinoma[J]. Cell Mol Life Sci,2013,70(5):829-839. [28] Tissandié E, Morelle W, Berthelot L, et al.Both IgA nephropathy and alcoholic cirrhosis feature abnormally glycosylated IgA1 and soluble CD89-IgA and IgG-IgA complexes: common mechanisms for distinct diseases[J]. Kidney Int,2011,80(12):1352-1363. [29] 谢静远, 史曼曼. 原发性IgA肾病危险因素及危险评分研究进展[J]. 内科理论与实践,2016,11(3):156-160. |
[1] | 何亲羽, 王伟, 陈立芬, 张雪蕾, 董治亚. LHCGR基因突变致家族性男性性早熟2例报告及文献复习[J]. 诊断学理论与实践, 2022, 21(05): 598-605. |
[2] | 武冬冬, 陈玉辉, 刘芳, 刘银红, 蒋景文. 脑小血管疾病合并中枢神经系统退行性疾病机制的研究进展[J]. 诊断学理论与实践, 2022, 21(05): 644-649. |
[3] | 陈志敏, 何浩岚. 艾滋病合并马尔尼菲篮状菌病的诊治现状[J]. 诊断学理论与实践, 2022, 21(04): 425-430. |
[4] | 沈银忠. 《人类免疫缺陷病毒感染/艾滋病合并结核分枝杆菌感染诊治专家共识》解读[J]. 诊断学理论与实践, 2022, 21(04): 431-436. |
[5] | 陈宏, 沈银忠. 人类免疫缺陷病毒感染/艾滋病合并结核病的诊治进展[J]. 诊断学理论与实践, 2022, 21(04): 530-534. |
[6] | 周思锋, 徐海舒, 范欣生. 基于不同生物样本代谢组学的OSAHS生物标志物研究进展[J]. 诊断学理论与实践, 2022, 21(04): 535-540. |
[7] | 何新, 陈慧, 冯炜炜. 机器学习算法在辅助超声诊断附件肿块良恶性中的应用研究进展[J]. 诊断学理论与实践, 2022, 21(04): 541-546. |
[8] | 徐子真, 李擎天, 刘湘帆, 李莉, 李惠, 王也飞, 吴洁敏, 陈宁, 梁璆荔, 陈松立, 戴健敏, 宋珍, 丁磊. 实验诊断学在线课程的建立和实践[J]. 诊断学理论与实践, 2022, 21(04): 547-550. |
[9] | 汤建平, 龚邦东. 干燥综合征的诊治现状、挑战和思考[J]. 诊断学理论与实践, 2022, 21(03): 291-298. |
[10] | 赵然, 詹维伟, 侯怡卿. 计算机辅助诊断系统辅助超声诊断甲状腺弥漫性病变合并结节良恶性的应用价值[J]. 诊断学理论与实践, 2022, 21(03): 390-394. |
[11] | 郭业兵, 郑金峰. 阴道壁胃肠道外间质瘤一例报道并文献复习[J]. 诊断学理论与实践, 2022, 21(03): 405-407. |
[12] | 王刚, 陈生弟. 神经病学的诊断:起源、发展及挑战[J]. 诊断学理论与实践, 2022, 21(01): 1-4. |
[13] | 唐静仪, 余群, 刘军. 结合人工智能的结构影像分析对阿尔茨海默病的早期预测及精准诊断研究进展[J]. 诊断学理论与实践, 2022, 21(01): 12-17. |
[14] | 李建平, 任汝静, 王刚. 阿尔茨海默病的临床诊治进展[J]. 诊断学理论与实践, 2022, 21(01): 18-21. |
[15] | 魏文石. 直面我国阿尔茨海默病诊治的挑战——《中国阿尔茨海默病报告2021》解读[J]. 诊断学理论与实践, 2022, 21(01): 5-7. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||