诊断学理论与实践 ›› 2022, Vol. 21 ›› Issue (05): 644-649.doi: 10.16150/j.1671-2870.2022.05.018
收稿日期:
2021-10-20
出版日期:
2022-10-25
发布日期:
2023-01-29
通讯作者:
陈玉辉,刘银红
E-mail:cmucyh@163.com;liuyh302@126.com
基金资助:
WU Dongdong, CHEN Yuhui(), LIU Fang, LIU Yinhong(), JIANG Jingwen
Received:
2021-10-20
Online:
2022-10-25
Published:
2023-01-29
Contact:
CHEN Yuhui,LIU Yinhong
E-mail:cmucyh@163.com;liuyh302@126.com
摘要:
脑小血管疾病(cerebral small vessel disease,CSVD)和中枢神经系统退行性疾病(如阿尔茨海默病、帕金森病和额颞叶变性等)的发病具有共同的分子基础和神经生物学机制,包括缺氧、血管内皮功能障碍、脑血管舒缩反应性受损和血脑屏障功能紊乱和胶质淋巴途径损伤等。中枢神经退行性疾病与CSVD合并发生时,患者常会呈现出与原有中枢神经退行性疾病不同的临床表型、疾病进程和结局。CSVD与神经退行性疾病(阿尔茨海默病、帕金森病及额颞叶变性)的病理及临床表现相关,脑脊液生物标志物对CSVD合并神经退行性疾病诊断具有一定价值。分子影像学标志物脑网络在全面研究CSVD与神经退行性疾病间关系中具有一定应用前景。聚焦于血管-神经-炎症模型的新治疗方法可能在未来中枢神经系统退行性疾病治疗中具有一定前景。
中图分类号:
武冬冬, 陈玉辉, 刘芳, 刘银红, 蒋景文. 脑小血管疾病合并中枢神经系统退行性疾病机制的研究进展[J]. 诊断学理论与实践, 2022, 21(05): 644-649.
WU Dongdong, CHEN Yuhui, LIU Fang, LIU Yinhong, JIANG Jingwen. Study progress on cerebral small vessel disease complicated with neurodegenerative disorders in central nervous system[J]. Journal of Diagnostics Concepts & Practice, 2022, 21(05): 644-649.
[1] |
Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications[J]. Lancet Neurol, 2019, 18(7):684-696.
doi: S1474-4422(19)30079-1 pmid: 31097385 |
[2] |
Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration[J]. Lancet Neurol, 2013, 12(8):822-838.
doi: 10.1016/S1474-4422(13)70124-8 pmid: 23867200 |
[3] |
Debette S, Schilling S, Duperron MG, et al. Clinical significance of magnetic resonance imaging markers of vascular brain injury: A systematic review and meta-analysis[J]. JAMA Neurol, 2019, 76(1):81-94.
doi: 10.1001/jamaneurol.2018.3122 pmid: 30422209 |
[4] |
Soto C, Pritzkow S. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases[J]. Nat Neurosci, 2018, 21(10):1332-1340.
doi: 10.1038/s41593-018-0235-9 pmid: 30250260 |
[5] |
Wang Z, Yang D, Zhang X, et al. Hypoxia-induced down-regulation of neprilysin by histone modification in mouse primary cortical and hippocampal neurons[J]. PLoS One, 2011, 6(4):e19229.
doi: 10.1371/journal.pone.0019229 URL |
[6] |
Fang H, Zhang LF, Meng FT, et al. Acute hypoxia promote the phosphorylation of tau via ERK pathway[J]. Neurosci Lett, 2010, 474(3):173-177.
doi: S0304-3940(10)00334-4 pmid: 20304032 |
[7] |
Kahl A, Blanco I, Jackman K, et al. Cerebral ischemia induces the aggregation of proteins linked to neurodegenerative diseases[J]. Sci Rep, 2018, 8(1):2701.
doi: 10.1038/s41598-018-21063-z pmid: 29426953 |
[8] |
Sarkar S, Raymick J, Mann D, et al. Neurovascular changes in acute, sub-acute and chronic mouse models of Parkinson′s disease[J]. Curr Neurovasc Res, 2014, 11(1):48-61.
pmid: 24274908 |
[9] |
Lyros E, Bakogiannis C, Liu Y, et al. Molecular links between endothelial dysfunction and neurodegeneration in Alzheimer′s disease[J]. Curr Alzheimer Res, 2014, 11(1):18-26.
doi: 10.2174/1567205010666131119235254 URL |
[10] |
Koizumi K, Wang G, Park L. Endothelial dysfunction and amyloid-beta-induced neurovascular alterations[J]. Cell Mol Neurobiol, 2016, 36(2):155-165.
doi: 10.1007/s10571-015-0256-9 pmid: 26328781 |
[11] |
Buratti L, Balestrini S, Altamura C, et al. Markers for the risk of progression from mild cognitive impairment to Alzheimer′s disease[J]. J Alzheimers Dis, 2015, 45(3):883-890.
doi: 10.3233/JAD-143135 pmid: 25633680 |
[12] | Camargo CH, Martins EA, Lange MC, et al. Abnormal cerebrovascular reactivity in patients with Parkinson′s disease[J]. Parkinsons Dis, 2015, 2015:523041. |
[13] |
Iadecola C. Cerebrovascular effects of amyloid-beta peptides: mechanisms and implications for Alzheimer′s dementia[J]. Cell Mol Neurobiol, 2003, 23(4-5):681-689.
doi: 10.1023/A:1025092617651 URL |
[14] |
van Beek AH, Claassen JA. The cerebrovascular role of the cholinergic neural system in Alzheimer′s disease[J]. Behav Brain Res, 2011, 221(2):537-542.
doi: 10.1016/j.bbr.2009.12.047 URL |
[15] |
Müller ML, Bohnen NI. Cholinergic dysfunction in Parkinson′s disease[J]. Curr Neurol Neurosci Rep, 2013, 13(9):377.
doi: 10.1007/s11910-013-0377-9 URL |
[16] |
Thal DR. The pre-capillary segment of the blood-brain barrier and its relation to perivascular drainage in Alzheimer′s disease and small vessel disease[J]. ScientificWorldJournal, 2009, 9:557-563.
doi: 10.1100/tsw.2009.72 URL |
[17] |
Utter S, Tamboli IY, Walter J, et al. Cerebral small vessel disease-induced apolipoprotein E leakage is associated with Alzheimer disease and the accumulation of amyloid beta-protein in perivascular astrocytes[J]. J Neuropathol Exp Neurol, 2008, 67(9):842-856.
doi: 10.1097/NEN.0b013e3181836a71 URL |
[18] | Holtzman DM, Herz J, Bu G. Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease[J]. Cold Spring Harb Perspect Med, 2012, 2(3):a006312. |
[19] |
Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders[J]. Lancet Neurol, 2018, 17(11):1016-1024.
doi: S1474-4422(18)30318-1 pmid: 30353860 |
[20] |
Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA research framework: Toward a biological definition of Alzheimer′s disease[J]. Alzheimers Dement., 2018, 14(4):535-562.
doi: 10.1016/j.jalz.2018.02.018 URL |
[21] |
Gorelick PB, Scuteri A, Black SE, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association[J]. Stroke, 2011, 42(9):2672-2713.
doi: 10.1161/STR.0b013e3182299496 pmid: 21778438 |
[22] |
Attems J, Jellinger KA. The overlap between vascular disease and Alzheimer′s disease--lessons from pathology[J]. BMC Med, 2014, 12:206.
doi: 10.1186/s12916-014-0206-2 URL |
[23] |
Soldan A, Pettigrew C, Zhu Y, et al. White matter hyperintensities and CSF Alzheimer disease biomarkers in preclinical Alzheimer disease[J]. Neurology, 2020, 94(9):e950-e960.
doi: 10.1212/WNL.0000000000008864 URL |
[24] |
Carmichael O, Schwarz C, Drucker D, et al. Longitudinal changes in white matter disease and cognition in the first year of the Alzheimer disease neuroimaging initiative[J]. Arch Neurol, 2010, 67(11):1370-1378.
doi: 10.1001/archneurol.2010.284 URL |
[25] |
Esiri MM, Joachim C, Sloan C, et al. Cerebral subcortical small vessel disease in subjects with pathologically confirmed Alzheimer disease: a clinicopathologic study in the Oxford Project to Investigate Memory and Ageing (OPTIMA)[J]. Alzheimer Dis Assoc Disord, 2014, 28(1):30-35.
doi: 10.1097/WAD.0b013e31829b72f1 URL |
[26] |
Ortner M, Kurz A, Alexopoulos P, et al. Small vessel disease, but neither amyloid load nor metabolic deficit, is dependent on age at onset in Alzheimer′s disease[J]. Biol Psychiatry, 2015, 77(8):704-710.
doi: 10.1016/j.biopsych.2014.01.019 URL |
[27] |
Stefaniak JD, Su L, Mak E, et al. Cerebral small vessel disease in middle age and genetic predisposition to late-onset Alzheimer′s disease[J]. Alzheimers Dement, 2018, 14(2):253-258.
doi: S1552-5260(17)33809-8 pmid: 29156222 |
[28] |
Raz N, Yang Y, Dahle CL, et al. Volume of white matter hyperintensities in healthy adults: contribution of age, vascular risk factors, and inflammation-related genetic variants[J]. Biochim Biophys Acta, 2012, 1822(3):361-369.
doi: 10.1016/j.bbadis.2011.08.007 pmid: 21889590 |
[29] |
Groot C, Sudre CH, Barkhof F, et al. Clinical phenotype, atrophy, and small vessel disease in APOE ε2 carriers with Alzheimer disease[J]. Neurology, 2018, 91(20):e1851-e1859.
doi: 10.1212/WNL.0000000000006503 URL |
[30] |
Ferreira D, Shams S, Cavallin L, et al. The contribution of small vessel disease to subtypes of Alzheimer′s disease: a study on cerebrospinal fluid and imaging biomarkers[J]. Neurobiol Aging, 2018, 70:18-29.
doi: S0197-4580(18)30196-9 pmid: 29935417 |
[31] |
Antonini A, Vitale C, Barone P, et al. The relationship between cerebral vascular disease and parkinsonism: The VADO study[J]. Parkinsonism Relat Disord, 2012, 18(6):775-780.
doi: 10.1016/j.parkreldis.2012.03.017 URL |
[32] |
Malek N, Lawton MA, Swallow DM, et al. Vascular disease and vascular risk factors in relation to motor features and cognition in early Parkinson′s disease[J]. Mov Disord, 2016, 31(10):1518-1526.
doi: 10.1002/mds.26698 URL |
[33] |
Shibata K, Sugiura M, Nishimura Y, et al. The effect of small vessel disease on motor and cognitive function in Parkinson′s disease[J]. Clin Neurol Neurosurg, 2019, 182:58-62.
doi: 10.1016/j.clineuro.2019.04.029 URL |
[34] |
Seelaar H, Rohrer JD, Pijnenburg YA, et al. Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review[J]. J Neurol Neurosurg Psychiatry, 2011, 82(5):476-486.
doi: 10.1136/jnnp.2010.212225 pmid: 20971753 |
[35] | Thal DR, von Arnim CA, Griffin WS, et al. Frontotemporal lobar degeneration FTLD-tau: preclinical lesions, vascular, and Alzheimer-related co-pathologies[J]. J Neural Transm (Vienna), 2015, 122(7):1007-1018. |
[36] |
de Guio F, Jouvent E, Biessels GJ, et al. Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease[J]. J Cereb Blood Flow Metab, 2016, 36(8):1319-1337.
doi: 10.1177/0271678X16647396 URL |
[37] |
Bjerke M, Zetterberg H, Edman A, et al. Cerebrospinal fluid matrix metalloproteinases and tissue inhibitor of metalloproteinases in combination with subcortical and cortical biomarkers in vascular dementia and Alzheimer′s disease[J]. J Alzheimers Dis, 2011, 27(3):665-676.
doi: 10.3233/JAD-2011-110566 pmid: 21860087 |
[38] |
Jonsson M, Zetterberg H, van Straaten E, et al. Cerebrospinal fluid biomarkers of white matter lesions - cross-sectional results from the LADIS study[J]. Eur J Neurol. 2010 Mar, 17(3):377-382.
doi: 10.1111/j.1468-1331.2009.02808.x pmid: 19845747 |
[39] |
Gaetani L, Blennow K, Calabresi P, et al. Neurofilament light chain as a biomarker in neurological disorders[J]. J Neurol Neurosurg Psychiatry, 2019, 90(8):870-881.
doi: 10.1136/jnnp-2018-320106 pmid: 30967444 |
[40] |
Ohrfelt A, Andreasson U, Simon A, et al. Screening for new biomarkers for subcortical vascular dementia and Alzheimer′s disease[J]. Dement Geriatr Cogn Dis Extra, 2011, 1(1):31-42.
doi: 10.1159/000323417 pmid: 22163231 |
[41] |
Pasi M, van Uden IW, Tuladhar AM, et al. White matter microstructural damage on diffusion tensor imaging in cerebral small vessel disease: Clinical Consequences[J]. Stroke, 2016, 47(6):1679-1684.
doi: 10.1161/STROKEAHA.115.012065 pmid: 27103015 |
[42] |
Tuladhar AM, van Uden IW, Rutten-Jacobs LC, et al. Structural network efficiency predicts conversion to dementia[J]. Neurology, 2016, 86(12):1112-1119.
doi: 10.1212/WNL.0000000000002502 pmid: 26888983 |
[43] |
Baggio HC, Segura B, Sala-Llonch R, et al. Cognitive impairment and resting-state network connectivity in Parkinson′s disease[J]. Hum Brain Mapp, 2015, 36(1):199-212.
doi: 10.1002/hbm.22622 URL |
[44] |
Ding W, Cao W, Wang Y, et al. Altered functional connectivity in patients with subcortical vascular cognitive impairment: A resting-state functional magnetic resonance imaging study[J]. PLoS One, 2015, 10(9):e0138180.
doi: 10.1371/journal.pone.0138180 URL |
[45] | Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer′s disease and other disorders[J]. Nat Rev Neurosci, 2011, 12(12):723-738. |
[46] |
Garry PS, Ezra M, Rowland MJ, et al. The role of the nitric oxide pathway in brain injury and its treatment--from bench to bedside[J]. Exp Neurol, 2015, 263:235-243.
doi: 10.1016/j.expneurol.2014.10.017 pmid: 25447937 |
[47] |
Spuch C, Antequera D, Portero A, et al. The effect of encapsulated VEGF-secreting cells on brain amyloid load and behavioral impairment in a mouse model of Alzheimer′s disease[J]. Biomaterials, 2010, 31(21):5608-5618.
doi: 10.1016/j.biomaterials.2010.03.042 URL |
[1] | 周思锋, 徐海舒, 范欣生. 基于不同生物样本代谢组学的OSAHS生物标志物研究进展[J]. 诊断学理论与实践, 2022, 21(04): 535-540. |
[2] | 唐静仪, 余群, 刘军. 结合人工智能的结构影像分析对阿尔茨海默病的早期预测及精准诊断研究进展[J]. 诊断学理论与实践, 2022, 21(01): 12-17. |
[3] | 李建平, 任汝静, 王刚. 阿尔茨海默病的临床诊治进展[J]. 诊断学理论与实践, 2022, 21(01): 18-21. |
[4] | 付丛会, 徐英, 苏巍, 文静, 刘志芳, 朱倩, 张静怡, 熊泽民, 陈兰兰, 贾杰. 新型冠状病毒性肺炎疫情封闭管理期间正念减压疗法对阿尔茨海默病患者情绪障碍及睡眠状况的影响分析[J]. 诊断学理论与实践, 2022, 21(01): 46-51. |
[5] | 魏文石. 直面我国阿尔茨海默病诊治的挑战——《中国阿尔茨海默病报告2021》解读[J]. 诊断学理论与实践, 2022, 21(01): 5-7. |
[6] | 付朝伟. 阿尔茨海默病重在预防——《中国阿尔茨海默病报告2021》解读[J]. 诊断学理论与实践, 2022, 21(01): 8-11. |
[7] | 黄沛, 任汝静, 潘昱, 林国珍, 王刚. 早发型阿尔茨海默病合并脑淀粉样血管病一例报道[J]. 诊断学理论与实践, 2022, 21(01): 86-89. |
[8] | 陈施吾, 窦荣花, 王玉凯, 王含, 王晓平, 陈先文, 陈玲, 王训, 屈洪党, 陈生弟, Susan Fox, 李燕, 王刚. 帕金森病血压管理专家共识[J]. 诊断学理论与实践, 2020, 19(05): 460-468. |
[9] | 邵丹丹, 付洋, 罗琪, 陈捷, 马建芳, 黄雷. 血清尿酸水平与帕金森病发病间关系的前瞻性研究[J]. 诊断学理论与实践, 2020, 19(02): 139-144. |
[10] | 陈洁, 胡进, 杨康, 傅毅. 脑出血患者伴皮质下含铁血黄素沉积的相关危险因素分析及预后的前瞻性研究[J]. 诊断学理论与实践, 2019, 18(2): 133-138. |
[11] | 陈海燕, 杨小宝, 许大康. 新生物标志物在胃肠道肿瘤中疗效预测和预后价值的研究进展[J]. 诊断学理论与实践, 2019, 18(06): 704-710. |
[12] | 罗清琼, 陈福祥. 肿瘤免疫治疗策略的转变及相关标志物研究现状[J]. 诊断学理论与实践, 2019, 18(04): 387-393. |
[13] | 武冬冬, 刘银红, 蒋景文, 陈海波. 放射性核素在帕金森病诊断中的应用[J]. 诊断学理论与实践, 2018, 17(06): 726-730. |
[14] | 杜坤, 杨喜, 卞炳贤, 任懿倩, 张广慧. 血清presepsin(sCD14-ST)、降钙素原、C反应蛋白和白介细胞素-6诊断血流细菌感染的诊断性能比较[J]. 诊断学理论与实践, 2018, 17(05): 581-585. |
[15] | 严振鹏, 杨月嫦, 吴惠涓, 陈坤, 徐云霞. 1例多方案评估帕金森病睡眠障碍治疗疗效的病例报告[J]. 诊断学理论与实践, 2018, 17(04): 457-459. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||