诊断学理论与实践 ›› 2022, Vol. 21 ›› Issue (03): 385-389.doi: 10.16150/j.1671-2870.2022.03.016
黄娟a, 朱晓雷a, 李晓b, 陈克敏a, 严福华a, 徐学勤a()
收稿日期:
2022-06-13
出版日期:
2022-06-25
发布日期:
2022-08-17
通讯作者:
徐学勤
E-mail:xxq11550@rjh.com.cn
HUANG Juana, ZHU Xiaoleia, LI Xiaob, CHEN Kemina, YAN Fuhuaa, XU Xueqina()
Received:
2022-06-13
Online:
2022-06-25
Published:
2022-08-17
Contact:
XU Xueqin
E-mail:xxq11550@rjh.com.cn
摘要:
目的:探讨肾脏血氧水平依赖(blood oxygen level-dependent,BOLD)磁共振成像(magnetic resonance imaging,MRI)评估慢性肾病(chronic kidney disease, CKD)早期肾缺氧的价值。方法:52例CKD患者(CKD组)和年龄、性别匹配的52名健康体检者(对照组)接受冠状面BOLD-MRI检查,分别测量肾脏皮、髓质R2*值。同时检测CKD患者的血清肌酐水平,运用Cockcroft-Gault公式计算获得估算肾小球滤过率,按照美国肾脏病基金会公布的肾脏病生存质量指导指南将CKD患者分为1~5期。比较对照组与CKD组、各CKD分期亚组间的肾脏皮质、髓质R2*值间的差异。结果:CKD组及对照组肾脏的髓质R2*值明显高于皮质R2*值(P<0.05)。CKD组[(16.40±2.47)/s]及CKD 1期组[(16.55±2.12)/s]、CKD 4期组[(16.48±2.95)/s]、CKD 5期组[(13.99±2.21)/s]的肾髓质R2*值均低于对照组[(18.17±2.38)/s](P<0.05)。结论:肾脏BOLD-MRI检查可发现CKD 1期患者肾髓质R2*值的下降变化,提示BOLD成像对慢性肾病早期肾髓质缺氧变化敏感,可用于CKD早期肾功能损害的诊断。
中图分类号:
黄娟, 朱晓雷, 李晓, 陈克敏, 严福华, 徐学勤. 血氧水平依赖磁共振成像评估早期慢性肾病肾缺氧的研究[J]. 诊断学理论与实践, 2022, 21(03): 385-389.
HUANG Juan, ZHU Xiaolei, LI Xiao, CHEN Kemin, YAN Fuhua, XU Xueqin. Study on blood oxygen level-dependent magnetic resonance imaging for the assessment of early renal hypoxia in chronic kidney disease[J]. Journal of Diagnostics Concepts & Practice, 2022, 21(03): 385-389.
表2
对照组及不同CKD分期组的肾脏R2*值($\bar{x}±s$)(/s)
分组 | 肾皮质R2*值 | 肾髓质R2*值 | P值 |
---|---|---|---|
对照组(n=52) | 12.69±1.09 | 18.17±2.38 | <0.001 |
CKD组(n=52) | 12.91±2.06 | 16.40±2.47 | <0.001 |
CKD 1期(n=13) | 12.47±1.57 | 16.55±2.12 | <0.001 |
CKD 2期(n=11) | 12.89±2.30 | 17.38±2.51 | <0.001 |
CKD 3期(n=10) | 13.80±2.67 | 16.91±1.78 | 0.001 |
CKD 4期(n=9) | 13.37±1.69 | 16.48±2.95 | 0.017 |
CKD 5期(n=9) | 12.81±2.66 | 13.99±2.21 | 0.354 |
[1] | Ene-Iordache B, Perico N, Bikbov B, et al. Chronic kidney disease and cardiovascular risk in six regions of the world (ISN-KDDC): a cross-sectional study[J]. Lancet Glob Health, 2016, 4(5):e307-e319. |
[2] |
Niendorf T, Pohlmann A, Arakelyan K, et al. How bold is blood oxygenation level-dependent (BOLD) magnetic reso-nance imaging of the kidney? Opportunities, challenges and future directions[J]. Acta Physiol (Oxf), 2015, 213(1):19-38.
doi: 10.1111/apha.12393 pmid: 25204811 |
[3] |
Fine LG, Norman JT. Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics[J]. Kidney Int, 2008, 74(7):867-872.
doi: 10.1038/ki.2008.350 URL |
[4] |
Michaely HJ, Metzger L, Haneder S, et al. Renal BOLD-MRI does not reflect renal function in chronic kidney disease[J]. Kidney Int, 2012, 81(7):684-689.
doi: 10.1038/ki.2011.455 pmid: 22237750 |
[5] |
Yin WJ, Liu F, Li XM, et al. Noninvasive evaluation of renal oxygenation in diabetic nephropathy by BOLD-MRI[J]. Eur J Radiol, 2012, 81(7):1426-1431.
doi: 10.1016/j.ejrad.2011.03.045 URL |
[6] |
Inoue T, Kozawa E, Okada H, et al. Noninvasive evaluation of kidney hypoxia and fibrosis using magnetic resonance imaging[J]. J Am Soc Nephrol, 2011, 22(8):1429-1434.
doi: 10.1681/ASN.2010111143 URL |
[7] |
Khatir DS, Pedersen M, Jespersen B, et al. Evaluation of renal blood flow and oxygenation in CKD using magnetic resonance imaging[J]. Am J Kidney Dis, 2015, 66(3):402-411.
doi: 10.1053/j.ajkd.2014.11.022 pmid: 25618188 |
[8] | National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification[J]. Am J Kidney Dis, 2002, 39(2 Suppl 1):S1-266. |
[9] |
Li LP, Halter S, Prasad PV. Blood oxygen level-dependent MR imaging of the kidneys[J]. Magn Reson Imaging Clin N Am, 2008, 16(4):613-625, viii.
doi: 10.1016/j.mric.2008.07.008 URL |
[10] |
Zhang R, Wang Y, Chen F, et al. Noninvasive evaluation of renal oxygenation in primary nephrotic syndrome with blood oxygen level dependent magnetic resonance ima-ging: Initial experience[J]. J Int Med Res, 2015, 43(3):356-363.
doi: 10.1177/0300060515579117 pmid: 25947644 |
[11] |
Piskunowicz M, Hofmann L, Zuercher E, et al. A new technique with high reproducibility to estimate renal oxygenation using BOLD-MRI in chronic kidney disease[J]. Magn Reson Imaging, 2015, 33(3):253-261.
doi: 10.1016/j.mri.2014.12.002 pmid: 25523609 |
[12] |
Khatir DS, Pedersen M, Jespersen B, et al. Reproducibi-lity of MRI renal artery blood flow and BOLD measurements in patients with chronic kidney disease and healthy controls[J]. J Magn Reson Imaging, 2014, 40(5):1091-1098.
doi: 10.1002/jmri.24446 pmid: 24470349 |
[13] |
Li X, Xu X, Zhang Q, et al. Diffusion weighted imaging and blood oxygen level-dependent MR imaging of kidneys in patients with lupus nephritis[J]. J Transl Med, 2014, 12:295.
doi: 10.1186/s12967-014-0295-x URL |
[14] |
Thoeny HC, Zumstein D, Simon-Zoula S, et al. Functio-nal evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience[J]. Radiology, 2006, 241(3):812-821.
doi: 10.1148/radiol.2413060103 URL |
[15] |
Luo F, Liao Y, Cui K, et al. Noninvasive evaluation of renal oxygenation in children with chronic kidney disease using blood-oxygen-level-dependent magnetic resonance imaging[J]. Pediatr Radiol, 2020, 50(6):848-854.
doi: 10.1007/s00247-020-04630-3 URL |
[16] |
Kang DH, Kanellis J, Hugo C, et al. Role of the microvascular endothelium in progressive renal disease[J]. J Am Soc Nephrol, 2002, 13(3):806-816.
doi: 10.1681/ASN.V133806 URL |
[17] | Prasad PV. Evaluation of intra-renal oxygenation by BOLD MRI[J]. Nephron Clin Pract, 2006, 103(2):c58-c65. |
[18] | Eckardt KU, Bernhardt WM, Weidemann A, et al. Role of hypoxia in the pathogenesis of renal disease[J]. Kidney Int Suppl, 2005(99):S46-S51. |
[19] | Nangaku M. Hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure[J]. Nephron Exp Nephrol, 2004, 98(1):e8-e12. |
[20] |
Nangaku M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure[J]. J Am Soc Nephrol, 2006, 17(1):17-25.
doi: 10.1681/ASN.2005070757 URL |
[21] |
Rossi C, Artunc F, Martirosian P, et al. Histogram analysis of renal arterial spin labeling perfusion data reveals differences between volunteers and patients with mild chronic kidney disease[J]. Invest Radiol, 2012, 47(8):490-496.
doi: 10.1097/RLI.0b013e318257063a URL |
[22] |
Gloviczki ML, Glockner JF, Crane JA, et al. Blood oxygen level-dependent magnetic resonance imaging identifies cortical hypoxia in severe renovascular disease[J]. Hypertension, 2011, 58(6):1066-1072.
doi: 10.1161/HYPERTENSIONAHA.111.171405 pmid: 22042812 |
[23] |
Neugarten J. Renal BOLD-MRI and assessment for renal hypoxia[J]. Kidney Int, 2012, 81(7):613-614.
doi: 10.1038/ki.2011.462 pmid: 22419042 |
[24] |
Pei XL, Xie JX, Liu JY, et al. A preliminary study of blood-oxygen-level-dependent MRI in patients with chro-nic kidney disease[J]. Magn Reson Imaging, 2012, 30(3):330-335.
doi: 10.1016/j.mri.2011.10.003 URL |
[1] | 芮文斌, 徐达, 祝宇, 吴瑜璇, 王浩飞, 汪成合, 袁菲. 缺氧诱导因子1α在乳头状肾细胞癌中的表达及其与预后的关系[J]. 诊断学理论与实践, 2021, 20(03): 265-370. |
[2] | 石朔, 王利华, 郭睿, 张敏, 苗莹, 张淼, 李彪,. 氯化钴诱导心肌细胞化学性缺氧HIF-1α表达的研究[J]. 诊断学理论与实践, 2013, 12(05): 532-536. |
[3] | 徐学勤, 李晓, 林晓珠, 朱晓雷, 倪根雄, 陈克敏, 严福华, 方文强, 徐耀文, 陈楠,. 肾脏血氧水平依赖MRI的初步应用[J]. 诊断学理论与实践, 2012, 11(02): 136-140. |
[4] | 王敏, 刘立, 熊立凡,. 尿蛋白检测方法在慢性肾病及高危患者中的临床应用评价[J]. 诊断学理论与实践, 2009, 8(06): 665-668. |
[5] | 袁伟杰, 谷立杰,. 缺氧在慢性肾脏疾病进程中的不良作用机制及其干预[J]. 诊断学理论与实践, 2007, 6(06): 478-481. |
[6] | 沈卫峰,. 重视心脏病学与肾脏病学的相互联系[J]. 诊断学理论与实践, 2006, 5(03): 197-198. |
[7] | 林善锬,. 慢性肾脏病与心血管病的相互关系——一个值得关注的重要问题[J]. 诊断学理论与实践, 2006, 5(03): 201-203. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||