 
  
	诊断学理论与实践 ›› 2019, Vol. 18 ›› Issue (06): 698-703.doi: 10.16150/j.1671-2870.2019.06.019
收稿日期:2018-07-04
									
				
									
				
									
				
											出版日期:2019-12-25
									
				
											发布日期:2019-12-25
									
			通讯作者:
					张文
											E-mail:zhangwen255@163.com
												
Received:2018-07-04
									
				
									
				
									
				
											Online:2019-12-25
									
				
											Published:2019-12-25
									
			中图分类号:
徐婷婷, 张文. 感染与中性粒细胞胞质抗体相关性血管炎间相关性的研究进展[J]. 诊断学理论与实践, 2019, 18(06): 698-703.
| [1] | Watts RA, Mahr A, Mohammad AJ, et al. Classification, epidemiology and clinical subgrouping of antineutrophil cytoplasmic antibody(ANCA)-associated vasculitis[J]. Nephrol Dial Transplant, 2015, 30(Suppl 1):i14-i22. | 
| [2] | Chen YX, Yu HJ, Zhang W, et al. Analyzing fatal cases of Chinese patients with primary antineutrophil cytoplasmic antibodies-associated renal vasculitis: a 10-year retrospective study[J]. Kidney Blood Press Res. 2008; 31(5):343-349. doi: 10.1159/000165117 URL | 
| [3] | Itabashi M, Takei T, Yabuki Y, et al. Clinical outcome and prognosis of anti-neutrophil cytoplasmic antibody-associated vasculitis in Japan[J]. Nephron Clin Pract, 2010, 115(1):c21-c27. | 
| [4] | Guillevin L, Cordier JF, Lhote F, et al. A prospective, multicenter, randomized trial comparing steroids and pulse cyclophosphamide versus steroids and oral cyclophosphamide in the treatment of generalized Wege-ner's granulomatosis[J]. Arthritis Rheum, 1997, 40(12):2187-2198. doi: 10.1002/art.1780401213 URL | 
| [5] | Kronbichler A, Jayne DR, Mayer G. Frequency, risk factors and prophylaxis of infection in ANCA-associated vasculitis[J]. Eur J Clin Invest, 2015, 45(3):346-368. doi: 10.1111/eci.12410 pmid: 25627555 | 
| [6] | Sada KE, Yamamura M, Harigai M, et al. Different responses to treatment across classified diseases and severities in Japanese patients with microscopic polyangiitis and granulomatosis with polyangiitis: a nationwide prospective inception cohort study[J]. Arthritis Res Ther, 2015, 17:305. doi: 10.1186/s13075-015-0815-y URL | 
| [7] | Goupil R, Brachemi S, Nadeau-Fredette AC, et al. Lymphopenia and treatment-related infectious complications in ANCA-associated vasculitis[J]. Clin J Am Soc Nephrol, 2013, 8(3):416-423. doi: 10.2215/CJN.07300712 URL | 
| [8] | Harper L, Savage CO. ANCA-associated renal vasculitis at the end of the twentieth century--a disease of older patients[J]. Rheumatology (Oxford), 2005, 44(4):495-501. doi: 10.1093/rheumatology/keh522 URL | 
| [9] | Guerry MJ, Brogan P, Bruce IN, et al. Recommendations for the use of rituximab in anti-neutrophil cytoplasm antibody-associated vasculitis[J]. Rheumatology (Oxford), 2012, 51(4):634-643. doi: 10.1093/rheumatology/ker150 URL | 
| [10] | Charlier C, Henegar C, Launay O, et al. Risk factors for major infections in Wegener granulomatosis: analysis of 113 patients[J]. Ann Rheum Dis, 2009, 68(5):658-663. doi: 10.1136/ard.2008.088302 pmid: 18504289 | 
| [11] | Charles P, Néel A, Tieulié N, et al. Rituximab for induction and maintenance treatment of ANCA-associated vasculitides: a multicentre retrospective study on 80 patients[J]. Rheumatology (Oxford), 2014, 53(3):532-539. doi: 10.1093/rheumatology/ket381 pmid: 24282319 | 
| [12] | Yates M, Watts RA, Bajema IM, et al. EULAR/ERA-EDTA recommendations for the management of ANCA-associated vasculitis[J]. Ann Rheum Dis, 2016, 75(9):1583-1594. doi: 10.1136/annrheumdis-2016-209133 pmid: 27338776 | 
| [13] | Kronbichler A, Kerschbaum J, Gopaluni S, et al. Trimethoprim-sulfamethoxazole prophylaxis prevents severe/life-threatening infections following rituximab in antineutrophil cytoplasm antibody-associated vasculitis[J]. Ann Rheum Dis, 2018, 77(10):1440-1447. doi: 10.1136/annrheumdis-2017-212861 pmid: 29950327 | 
| [14] | Cartin-Ceba R, Golbin JM, Keogh KA, et al. Rituximab for remission induction and maintenance in refractory granulomatosis with polyangiitis(Wegener's): ten-year experience at a single center[J]. Arthritis Rheum, 2012, 64(11):3770-3778. doi: 10.1002/art.34584 URL | 
| [15] | Pendergraft WF 3rd, Preston GA, Shah RR, et al. Autoimmunity is triggered by cPR-3(105-201), a protein complementary to human autoantigen proteinase-3[J]. Nat Med, 2004, 10(1):72-79. doi: 10.1038/nm968 pmid: 14661018 | 
| [16] | Kain R, Exner M, Brandes R, et al. Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis[J]. Nat Med, 2008, 14(10):1088-1096. doi: 10.1038/nm.1874 URL | 
| [17] | Roth AJ, Brown MC, Smith RN, et al. Anti-LAMP-2 antibodies are not prevalent in patients with antineutrophil cytoplasmic autoantibody glomerulonephritis[J]. J Am Soc Nephrol, 2012, 23(3):545-555. doi: 10.1681/ASN.2011030273 URL | 
| [18] | Peschel A, Basu N, Benharkou A, et al. Autoantibodies to hLAMP-2 in ANCA-negative pauci-immune focal necrotizing GN[J]. J Am Soc Nephrol, 2014, 25(3):455-463. doi: 10.1681/ASN.2013030320 pmid: 24203998 | 
| [19] | Takeuchi S, Kimura S, Soma Y, et al. Lysosomal-associa-ted membrane protein-2 plays an important role in the pathogenesis of primary cutaneous vasculitis[J]. Rheumatology (Oxford), 2013, 52(9):1592-1598. doi: 10.1093/rheumatology/ket159 pmid: 23704322 | 
| [20] | Zielinski CE, Mele F, Aschenbrenner D, et al. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β[J]. Nature, 2012, 484(7395):514-518. doi: 10.1038/nature10957 URL | 
| [21] | Dong X, Bachman LA, Miller MN, et al. Dendritic cells facilitate accumulation of IL-17 T cells in the kidney following acute renal obstruction[J]. Kidney Int, 2008, 74(10):1294-1309. doi: 10.1038/ki.2008.394 URL | 
| [22] | Paust HJ, Turner JE, Steinmetz OM, et al. The IL-23/Th17 axis contributes to renal injury in experimental glomerulonephritis[J]. J Am Soc Nephrol, 2009, 20(5):969-979. doi: 10.1681/ASN.2008050556 URL | 
| [23] | Wilde B, Thewissen M, Damoiseaux J, et al. Th17 expansion in granulomatosis with polyangiitis (Wegener's): the role of disease activity, immune regulation and therapy[J]. Arthritis Res Ther, 2012, 14(5):R227. | 
| [24] | Free ME, Bunch DO, McGregor JA, et al. Patients with antineutrophil cytoplasmic antibody-associated vasculitis have defective Treg cell function exacerbated by the presence of a suppression-resistant effector cell population[J]. Arthritis Rheum, 2013, 65(7):1922-1933. doi: 10.1002/art.37959 URL | 
| [25] | Velden J, Paust HJ, Hoxha E, et al. Renal IL-17 expression in human ANCA-associated glomerulonephritis[J]. Am J Physiol Renal Physiol, 2012, 302(12):F1663-F1673. | 
| [26] | Krebs CF, Paust HJ, Krohn S, et al. Autoimmune renal disease is exacerbated by S1P-receptor-1-dependent intestinal Th17 cell migration to the kidney[J]. Immunity, 2016, 45(5):1078-1092. doi: 10.1016/j.immuni.2016.10.020 URL | 
| [27] | Savage CO, Gaskin G, Pusey CD, et al. Myeloperoxidase binds to vascular endothelial cells, is recognized by ANCA and can enhance complement dependent cytotoxicity[J]. Adv Exp Med Biol, 1993, 336:121-123. pmid: 8296599 | 
| [28] | Jennette JC, Falk RJ. Pathogenesis of antineutrophil cytoplasmic autoantibody-mediated disease[J]. Nat Rev Rheumatol, 2014, 10(8):463-473. doi: 10.1038/nrrheum.2014.103 pmid: 25003769 | 
| [29] | Huang YM, Wang H, Wang C, et al. Promotion of hypercoagulability in antineutrophil cytoplasmic antibody-associated vasculitis by C5a-induced tissue factor-expressing microparticles and neutrophil extracellular traps[J]. Arthritis Rheumatol, 2015, 67(10):2780-2790. doi: 10.1002/art.39239 URL | 
| [30] | Kantari C, Pederzoli-Ribeil M, Amir-Moazami O, et al. Proteinase 3, the Wegener autoantigen, is externalized during neutrophil apoptosis: evidence for a functional association with phospholipid scramblase 1 and interfere-nce with macrophage phagocytosis[J]. Blood, 2007, 110(12):4086-4095. | 
| [31] | Millet A, Martin KR, Bonnefoy F, et al. Proteinase 3 on apoptotic cells disrupts immune silencing in autoimmune vasculitis[J]. J Clin Invest, 2015, 125(11):4107-4121. doi: 10.1172/JCI78182 URL | 
| [32] | Kanehisa M, Goto S, Sato Y, et al. KEGG for integration and interpretation of large-scale molecular data sets[J]. Nucleic Acids Res, 2012,40(Database issue):D109-D114. | 
| [33] | Kerstein A, Schüler S, Cabral-Marques O, et al. Environmental factor and inflammation-driven alteration of the total peripheral T-cell compartment in granulomatosis with polyangiitis[J]. J Autoimmun, 2017, 78:79-91. doi: S0896-8411(16)30186-X pmid: 28040323 | 
| [34] | Laudien M, Gadola SD, Podschun R, et al. Nasal carriage of Staphylococcus aureus and endonasal activity in Wegener s granulomatosis as compared to rheumatoid arthritis and chronic Rhinosinusitis with nasal polyps[J]. Clin Exp Rheumatol, 2010, 28(1 Suppl 57):51-55. pmid: 20412703 | 
| [35] | Addy C, Doran G, Jones AL, et al. Microscopic polyangii-tis secondary to Mycobacterium abscessus in a patient with bronchiectasis: a case report[J]. BMC Pulm Med, 2018, 18(1):170. doi: 10.1186/s12890-018-0732-3 pmid: 30453935 | 
| [36] | Iijima Y, Kobayashi Y, Uchida Y, et al. A case report of granulomatous polyangiitis complicated by tuberculous lymphadenitis[J]. Medicine (Baltimore), 2018, 97(43):e12430. | 
| [37] | Fukusumi M, Miyazaki K, Shibata M, et al. A case of Wegener granulomatosis after treatment for non-tuberculous mycobacteriosis[J]. Nihon Kokyuki Gakkai Zasshi, 2011, 49(1):37-43. | 
| [38] | Yamaguchi M, Yoshioka T, Yamakawa T, et al. Anti-neutrophil cytoplasmic antibody-associated vasculitis associated with infectious mononucleosis due to primary Epstein-Barr virus infection: report of three cases[J]. Clin Kidney J, 2014, 7(1):45-48. doi: 10.1093/ckj/sft140 pmid: 25859349 | 
| [39] | Meyer MF, Hellmich B, Kotterba S, et al. Cytomegalovirus infection in systemic necrotizing vasculitis: causative agent or opportunistic infection?[J]. Rheumatol Int, 2000, 20(1):35-38. pmid: 11149660 | 
| [40] | Lidar M, Lipschitz N, Langevitz P, et al. Infectious serologies and autoantibodies in Wegener's granulomatosis and other vasculitides: novel associations disclosed using the Rad BioPlex 2200[J]. Ann N Y Acad Sci, 2009, 1173:649-657. doi: 10.1111/j.1749-6632.2009.04641.x URL | 
| [41] | Marshak-Rothstein A. Toll-like receptors in systemic autoimmune disease[J]. Nat Rev Immunol, 2006, 6(11):823-835. doi: 10.1038/nri1957 pmid: 17063184 | 
| [42] | Uezono S, Sato Y, Hara S, et al. Outcome of ANCA-associated primary renal vasculitis in Miyazaki Prefecture[J]. Intern Med, 2007, 46(12):815-822. doi: 10.2169/internalmedicine.46.6371 URL | 
| [43] | Matsumoto Y, Sada KE, Otsuka F, et al. Evaluation of weekly-reduction regimen of glucocorticoids in combination with cyclophosphamide for anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis in Japanese patients[J]. Rheumatol Int, 2012, 32(10):2999-3005. doi: 10.1007/s00296-011-2136-z URL | 
| [44] | Godeau B, Mainardi JL, Roudot-Thoraval F, et al. Factors associated with Pneumocystis carinii pneumonia in Wegener's granulomatosis[J]. Ann Rheum Dis, 1995, 54(12):991-994. doi: 10.1136/ard.54.12.991 pmid: 8546533 | 
| [45] | Weidanz F, Day CJ, Hewins P, et al. Recurrences and infections during continuous immunosuppressive therapy after beginning dialysis in ANCA-associated vasculitis[J]. Am J Kidney Dis, 2007, 50(1):36-46. pmid: 17591523 | 
| [46] | Lionaki S, Hogan SL, Jennette CE, et al. The clinical course of ANCA small-vessel vasculitis on chronic dialysis[J]. Kidney Int, 2009, 76(6):644-651. doi: 10.1038/ki.2009.218 pmid: 19536079 | 
| [47] | Flossmann O, Berden A, de Groot K, et al. Long-term patient survival in ANCA-associated vasculitis[J]. Ann Rheum Dis, 2011, 70(3):488-494. doi: 10.1136/ard.2010.137778 pmid: 21109517 | 
| [48] | Bligny D, Mahr A, Toumelin PL, et al. Predicting mortality in systemic Wegener's granulomatosis: a survival analysis based on 93 patients[J]. Arthritis Rheum, 2004, 51(1):83-91. doi: 10.1002/art.20082 URL | 
| [1] | 王晓琳, 赵钢德, 林兰意, 周惠娟, 方跃华, 盛滋科, 蔡伟, 谢青, 丁叶舟, 陶蓉, 王晖. 戈登链球菌所致感染性心内膜炎1例[J]. 诊断学理论与实践, 2022, 21(05): 629-631. | 
| [2] | 陈宏, 沈银忠. 人类免疫缺陷病毒感染/艾滋病合并结核病的诊治进展[J]. 诊断学理论与实践, 2022, 21(04): 530-534. | 
| [3] | 汤建平, 龚邦东. 干燥综合征的诊治现状、挑战和思考[J]. 诊断学理论与实践, 2022, 21(03): 291-298. | 
| [4] | 李佳, 吕良敬. 靶向治疗时代议自身免疫病的感染挑战[J]. 诊断学理论与实践, 2022, 21(03): 299-303. | 
| [5] | 牟兴, 叶倩仪, 卢红娟, 徐沪济, 吴歆. 季节变化对风湿病发病机制及病情活动的影响[J]. 诊断学理论与实践, 2022, 21(03): 304-311. | 
| [6] | 阮玉凤, 胡丽萍, 陈史蓉, 尹君, 孙璟. 上海浦东新区全科医师对规范化诊治幽门螺杆菌感染掌握程度的调研[J]. 诊断学理论与实践, 2022, 21(03): 399-404. | 
| [7] | 张祎博, 吴文娟, 毕宇芳, 景峰, 顾志冬, 杨之涛, 尚寒冰, 林靖生, 陈尔真. 大型方舱医院感染预防与控制体系的建设和实践探索[J]. 诊断学理论与实践, 2022, 21(02): 165-168. | 
| [8] | 施莺莺, 钟旭, 刘嘉琳, 何乐, 熊少洁, 翁懿, 丁成唯, 杨溢, 陈伟红, 邱力萍, 辛海光. 新型冠状病毒疫情相关防疫工作人员感染防控实践调查分析及对策[J]. 诊断学理论与实践, 2022, 21(02): 178-183. | 
| [9] | 庄蕾, 高卫益. 新型冠状病毒肺炎疫情期间非定点医疗机构“分区管理”策略[J]. 诊断学理论与实践, 2022, 21(02): 245-247. | 
| [10] | 虞佩, 金瑞, 唐静, 陈海涛, 高卫益. 新型冠状病毒感染疫情期间非定点医疗机构急诊区域的管理策略[J]. 诊断学理论与实践, 2022, 21(02): 248-251. | 
| [11] | 王亦晨, 周剑平, 杨振华, 王敏慧, 刘佳, 倪语星, 张祎博, 石大可, 徐玉敏. 新型冠状病毒肺炎救治临时定点医院工作人员医院感染防控管理方案[J]. 诊断学理论与实践, 2022, 21(02): 270-272. | 
| [12] | 许晓倩, 卿恺, 张苏江. 造血干细胞移植后非感染性肺部并发症的诊治进展[J]. 诊断学理论与实践, 2021, 20(06): 515-521. | 
| [13] | 罗雅方, 徐倩玥, 余红. 尘螨在特应性皮炎中的致病机制及相关免疫治疗应用研究进展[J]. 诊断学理论与实践, 2021, 20(06): 592-595. | 
| [14] | 苏长青. 从基础研究到临床转化应用谈肝癌的诊治进展[J]. 诊断学理论与实践, 2021, 20(05): 427-433. | 
| [15] | 郭静, 沈银忠. HIV感染/AIDS合并结核病的临床及免疫学特点研究进展[J]. 诊断学理论与实践, 2021, 20(04): 401-406. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||
