诊断学理论与实践 ›› 2021, Vol. 20 ›› Issue (01): 60-65.doi: 10.16150/j.1671-2870.2021.01.009
收稿日期:
2020-09-15
出版日期:
2021-02-25
发布日期:
2022-06-28
通讯作者:
殷其改
E-mail:18961322517@163.om
基金资助:
Received:
2020-09-15
Online:
2021-02-25
Published:
2022-06-28
Contact:
YIN Qigai
E-mail:18961322517@163.om
摘要:
目的:探讨产前地塞米松暴露对极低和超低体重早产儿出生后生存结局及早期并发症的影响。方法:回顾性分析2012年1月1日至2020年7月31日在徐州医科大学附属连云港医院产科分娩的355例新生儿临床资料,新生儿为出生体重均≤1 500 g的适于胎龄儿,均直接转入本院新生儿科救治。新生儿分为超低体重早产儿(29例)和极低体重早产儿(326例),根据其出生前孕妇是否正规使用过地塞米松,再分别分为暴露组和未暴露组,比较组间早产儿间的生存结局,进一步对其中存活的298例早产儿的一般资料、出生后早期并发症以及母亲孕期并发症情况进行单因素分析,并采用二元logistic回归模型进行多因素研究。结果:在326例极低体重早产儿(出生体重大于1 000 g且小于等于1 500 g)中,暴露组(215例)与未暴露组(111例)间的一般临床资料(性别、出生体重、胎龄、Apgar评分、胎数、分娩方式、住院时间、氧疗时间)比较,差异均无统计学意义(P>0.05),暴露组的死亡率低于未暴露组(9例比41例,8.1%比19.1%),差异有统计学意义(χ2=6.774,P=0.009);2组间出生后早期并发症(新生儿黄疸、新生儿贫血、坏死性小肠结肠炎、新生儿肺炎、动脉导管未闭、脑室内出血)的发生率差异无统计学意义(P>0.05)。极低体重早产儿暴露组的呼吸窘迫综合征、支气管肺发育不良发生率均低于未暴露组(24.5%比37.9%、19.6%比31.0%)(P<0.05),产前使用地塞米松是呼吸窘迫综合征的独立保护因素。极低体重早产儿暴露组的新生儿低血糖、新生儿败血症、早产儿视网膜病发生率高于未暴露组(P<0.05),产前使用地塞米松是以上这些并发症发生的独立危险因素[比值比(odds ratio,OR)值分别为4.332、2.813、4.888,95%置信区间(confidence interval,CI)分别为2.443~7.681、1.316~6.014、1.609~14.849]。2组间母亲孕期的并发症发生差异无统计学意义(P>0.05)。在超低体重早产儿中,暴露组与未暴露组间的生存结局、一般资料、出生后早期并发症及母亲孕期并发症情况比较,差异均无统计学意义(P>0.05)。结论:产前使用地塞米松对超低体重早产儿的生存结局及早期并发症发生情况无影响,但可以降低极低体重早产儿的呼吸窘迫综合征、支气管肺发育不良发生率,提高生存率、改善预后,但同时会增加新生儿视网膜病、低血糖及败血症的发生率。
中图分类号:
申璐, 殷其改. 产前地塞米松暴露对极低和超低体重早产儿生存结局及早期并发症的影响[J]. 诊断学理论与实践, 2021, 20(01): 60-65.
SHEN Lu, YIN Qigai. Effects of prenatal exposure to dexamethasone on early complications and survival outcome in the newborns with very and extremely low birth weight[J]. Journal of Diagnostics Concepts & Practice, 2021, 20(01): 60-65.
表2
暴露组与未暴露组的极低和超低体重早产儿一般资料比较
项目 | 超低体重早产儿(n=22) | 极低体重早产儿( n=276) | |||||||
---|---|---|---|---|---|---|---|---|---|
暴露组(n=10) | 未暴露组(n=12) | t或z或χ2值 | P值 | 暴露组(n=102) | 未暴露组(n=174) | t或z或χ2值 | P值 | ||
住院时间(d) | 66±26 | 48±19 | t=-1.902 | 0.075 | 36(27~48) | 38(29~47) | z=0.589 | 0.556 | |
氧疗时间(d) | 42±33 | 35±20 | t=-0.598 | 0.559 | 6(3~19) | 7(2~17) | z=-0.107 | 0.915 | |
出生时体重(g) | 900(763~968) | 900(890~978) | z=-0.497 | 0.619 | 1 365±156 | 1 369±149 | t=-0.210 | 0.834 | |
出生时胎龄(周) | 29(27~29) | 29(28~29) | z=-0.100 | 0.920 | 31(29~32) | 30(29~32) | z=-0.370 | 0.711 | |
1 min Apgar评分(分) | 6(4~8) | 7(2~8) | z=-0.034 | 0.973 | 8(7~8) | 8(7~8) | z=-0.642 | 0.521 | |
5 min Apgar评分(分) | 8(6~8) | 8(4~8) | z=-0.137 | 0.891 | 9(8~9) | 9(8~9) | z=-0.132 | 0.895 | |
男性 | 5 | 3 | -a) | 0.378 | 58 | 89 | χ2=0.843 | 0.358 | |
单胎 | 5 | 8 | -a) | 0.666 | 79 | 136 | χ2=0.019 | 0.891 | |
剖宫产分娩 | 4 | 6 | -a) | 0.691 | 57 | 79 | χ2=2.826 | 0.093 |
表3
暴露组与未暴露组的极低和超低体重早产儿出生后并发症比较(n)
并发症 | 超低体重早产儿a)(n=22) | P值 | 极低体重早产儿(n=276) | χ2值 | P值 | ||
---|---|---|---|---|---|---|---|
暴露组(n=10) | 未暴露组(n=12) | 暴露组(n=102) | 未暴露组(n=174) | ||||
新生儿低血糖 | 3 | 2 | 0.624 | 49 | 32 | 27.261 | <0.001 |
新生儿黄疸 | 6 | 6 | 0.691 | 47 | 82 | 0.028 | 0.866 |
新生儿贫血 | 10 | 9 | 0.221 | 49 | 93 | 0.753 | 0.385 |
新生儿肺炎 | 8 | 9 | 0.323 | 46 | 72 | 0.363 | 0.547 |
新生儿败血症 | 3 | 1 | 0.293 | 20 | 17 | 5.361 | 0.021 |
RDS | 7 | 9 | 1.000 | 25 | 66 | 5.241 | 0.021 |
BPD | 7 | 6 | 0.415 | 20 | 54 | 4.279 | 0.039 |
坏死性小肠结肠炎 | 1 | 0 | 0.455 | 9 | 8 | 1.987 | 0.159 |
动脉导管未闭 | 2 | 0 | 0.481 | 7 | 10 | 0.138 | 0.710 |
脑室内出血 | 2 | 3 | 1.000 | 12 | 23 | 0.123 | 0.726 |
ROP | 3 | 0 | 0.078 | 11 | 6 | 5.987 | 0.014 |
表5
暴露组与未暴露组极低体重早产儿出生后并发症的多因素分析
影响因素 | β | 标准误差 | Wald | OR值 | 95%CI | P值 |
---|---|---|---|---|---|---|
下限~上限 | ||||||
RDS | -0.680 | 0.337 | 4.075 | 0.507 | 0.262~0.980 | 0.044 |
BPD | -0.415 | 0.356 | 1.358 | 0.661 | 0.329~1.327 | 0.244 |
ROP | 1.587 | 0.567 | 7.834 | 4.888 | 1.609~14.849 | 0.005 |
新生儿低血糖 | 1.466 | 0.292 | 25.176 | 4.332 | 2.443~7.681 | <0.001 |
新生儿败血症 | 1.034 | 0.388 | 7.119 | 2.813 | 1.316~6.014 | 0.008 |
[1] |
Howson CP, Kinney MV, McDougall L, et al. Born too soon: preterm birth matterss[J]. Reprod Health, 2013, 10(Suppl 1):S1.
doi: 10.1186/1742-4755-10-S1-S1 URL |
[2] |
Gilman-Sachs A, Dambaeva S, Salazar Garcia MD, et al. Inflammation induced preterm labor and birth[J]. J Reprod Immunol, 2018, 129:53-58.
doi: S0165-0378(18)30190-6 pmid: 30025845 |
[3] |
Romero R, Dey SK, Fisher SJ. Preterm labor: one syndrome, many causes[J]. Science, 2014, 345(6198):760-765.
doi: 10.1126/science.1251816 URL |
[4] |
Liao XP, Chipenda-Dansokho S, Lewin A, et al. Advanced neonatal medicine in china: a national baseline database[J]. PLoS One, 2017, 12(1):e0169970.
doi: 10.1371/journal.pone.0169970 URL |
[5] | Lin HJ, Du LZ, Ma XL, et al. Mortality and morbidity of extremely low birth weight infants in the mainland of China: a multi-center study[J]. Chin Med J (Engl), 2015, 128(20):2743-2750. |
[6] |
Romejko-Wolniewicz E, Oleszczuk L, Zaręba-Szczudlik J, et al. Dosage regimen of antenatal steroids prior to preterm delivery and effects on maternal and neonatal outcomes[J]. J Matern Fetal Neonatal Med, 2013, 26(3):237-241.
doi: 10.3109/14767058.2012.733758 pmid: 23035749 |
[7] |
Blencowe H, Cousens S, Oestergaard MZ, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications[J]. Lancet, 2012, 379(9832):2162-2172.
doi: 10.1016/S0140-6736(12)60820-4 pmid: 22682464 |
[8] |
Vogel JP, Souza JP, Gülmezoglu AM, et al. Use of an-tenatal corticosteroids and tocolytic drugs in preterm births in 29 countries: an analysis of the WHO multicountry survey on maternal and newborn health[J]. Lancet, 2014, 384(9957):1869-1877.
doi: 10.1016/S0140-6736(14)60580-8 URL |
[9] |
Bolisetty S, Tiwari M, Sutton L, et al. Neurodevelopmental outcomes of extremely preterm infants in New South Wales and the Australian Capital Territory[J]. J Paediatr Child Health, 2019, 55(8):956-961.
doi: 10.1111/jpc.14323 URL |
[10] |
Bolisetty S, Legge N, Bajuk B, et al. Preterm infant outcomes in New South Wales and the Australian Capital Territory[J]. J Paediatr Child Health, 2015, 51(7):713-21.
doi: 10.1111/jpc.12848 URL |
[11] | 早产儿呼吸窘迫综合征流行病学调查协作组. 产前糖皮质激素对早产小于胎龄儿病死率和主要并发症的影响[J]. 中华儿科杂志, 2017, 55(8):613-618. |
[12] |
Riskin-Mashiah S, Reichman B, Bader D, et al. Population-based study on antenatal corticosteroid treatment in preterm small for gestational age and non-small for gestational age twin infants[J]. J Matern Fetal Neonatal Med, 2018, 31(5):553-559.
doi: 10.1080/14767058.2017.1292242 pmid: 28166660 |
[13] |
Norman M, Piedvache A, Børch K, et al. Association of short antenatal corticosteroid administration-to-birth intervals with survival and morbidity among very preterm infants: results from the EPICE Cohort[J]. JAMA Pediatr, 2017, 171(7):678-686.
doi: 10.1001/jamapediatrics.2017.0602 URL |
[14] |
Wang H, Yue H, Sun B, et al. Birth population survey in Huai'an in 2015: perinatal-neonatal mortality and preterm birth rate in emerging regions in China[J]. J Matern Fetal Neonatal Med, 2020, 33(5):838-846.
doi: 10.1080/14767058.2018.1506439 pmid: 30373412 |
[15] |
Poets CF, Lorenz L. Prevention of bronchopulmonary dysplasia in extremely low gestational age neonates: current evidence[J]. Arch Dis Child Fetal Neonatal Ed, 2018, 103(3):F285-F291.
doi: 10.1136/archdischild-2017-314264 URL |
[16] |
Carlo WA, McDonald SA, Fanaroff AA, et al. Association of antenatal corticosteroids with mortality and neuro-developmental outcomes among infants born at 22 to 25 weeks' gestation[J]. JAMA, 2011, 306(21):2348-2358.
doi: 10.1001/jama.2011.1752 URL |
[17] |
Pettit KE, Tran SH, Lee E, et al. The association of antenatal corticosteroids with neonatal hypoglycemia and hyperbilirubinemia[J]. J Matern Fetal Neonatal Med, 2014, 27(7):683-686.
doi: 10.3109/14767058.2013.832750 pmid: 23927067 |
[18] |
Gyamfi-Bannerman C, Thom EA, Blackwell SC, et al. Antenatal betamethasone for women at risk for late preterm delivery[J]. N Engl J Med, 2016, 374(14):1311-1320.
doi: 10.1056/NEJMoa1516783 URL |
[19] |
Kirshenbaum M, Mazaki-Tovi S, Amikam U, et al. Does antenatal steroids treatment prior to elective cesarean section at 34-37 weeks of gestation reduce neonatal morbidity? Evidence from a case control study[J]. Arch Gynecol Obstet, 2018, 297(1):101-107.
doi: 10.1007/s00404-017-4557-8 pmid: 29067513 |
[20] |
Aydin M, Deveci U, Hakan N. Neonatal hypoglycemia associated with the antenatal corticosteroids may be seco-ndary to fetal adrenal suppression[J]. J Matern Fetal Neonatal Med, 2015, 28(8):892.
doi: 10.3109/14767058.2014.936002 URL |
[21] |
Sifianou P, Thanou V, Karga H. Metabolic and hormonal effects of antenatal betamethasone after 35 weeks of gestation[J]. J Pediatr Pharmacol Ther, 2015, 20(2):138-143.
doi: 10.5863/1551-6776-20.2.138 pmid: 25964731 |
[1] | 杜燕然, 焦景, 任芸芸, 周建桥. 超声影像组学技术在评估胎肺成熟度中的应用[J]. 诊断学理论与实践, 2022, 21(03): 326-330. |
[2] | 许晓倩, 卿恺, 张苏江. 造血干细胞移植后非感染性肺部并发症的诊治进展[J]. 诊断学理论与实践, 2021, 20(06): 515-521. |
[3] | 马文明, 李强, 卓然, 冒永鑫, 戴军, 罗艳, 孙福康. 嗜铬细胞瘤术前CT影像学参数与围手术期参数的相关性研究[J]. 诊断学理论与实践, 2020, 19(02): 172-176. |
[4] | 李萍, 康磊, 张晓虹, 陶蓉. “6W”理论联合情景模拟教学应用于心血管专科疾病临床教学的效果评价[J]. 诊断学理论与实践, 2018, 17(02): 231-234. |
[5] | 尚佳, 李威,. 肝硬化并发症的诊断[J]. 诊断学理论与实践, 2015, 14(04): 304-307. |
[6] | 山洁慧, 胡炯,. 造血干细胞移植后肺部并发症的诊断和治疗[J]. 诊断学理论与实践, 2012, 11(04): 422-427. |
[7] | 陈克敏, 黄蔚, 吴志远,. 胸部经皮穿刺活检及并发症的预防和处置[J]. 诊断学理论与实践, 2010, 9(05): 532-534. |
[8] | 宋陆茜, 吴凌云, 常春康, 李晓,. 急性白血病诱导缓解后并发走马疳一例报告及文献复习[J]. 诊断学理论与实践, 2010, 9(01): 79-81. |
[9] | 陈军, 卢洪洲,. 人类细小病毒感染研究进展[J]. 诊断学理论与实践, 2008, 7(04): 454-456. |
[10] | 张豫文, 洪洁,. 糖耐量受损与冠心病的关系及其可能的影响因素[J]. 诊断学理论与实践, 2008, 7(03): 356-358. |
[11] | 陈建, 俞国庆,. 肾病综合征并发肺血栓栓塞的诊断[J]. 诊断学理论与实践, 2007, 6(06): 555-557. |
[12] | 张磊, 董隽, 洪宝发,. 移植肾动脉狭窄诊断及治疗[J]. 诊断学理论与实践, 2006, 5(03): 279-280. |
[13] | 罗敏. 重视糖尿病实验诊断指标的规范化应用[J]. 诊断学理论与实践, 2003, 2(02): 9-12. |
[14] | 王鸿利. 同型半胱氨酸的检测及其应用[J]. 诊断学理论与实践, 2002, 1(04): 53-57. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||