诊断学理论与实践 ›› 2021, Vol. 20 ›› Issue (01): 104-108.doi: 10.16150/j.1671-2870.2021.01.017
收稿日期:
2020-11-04
出版日期:
2021-02-25
发布日期:
2022-06-28
通讯作者:
韩峻峰
E-mail:tjhjf@163.com
基金资助:
Received:
2020-11-04
Online:
2021-02-25
Published:
2022-06-28
中图分类号:
李少博, 杨迪, 韩峻峰. 身体成分变化与非酒精性脂肪性肝病的相关研究进展[J]. 诊断学理论与实践, 2021, 20(01): 104-108.
[1] |
Fan JG, Kim SU, Wong VW. New trends on obesity and NAFLD in Asia[J]. J Hepatol, 2017, 67(4):862-873.
doi: 10.1016/j.jhep.2017.06.003 URL |
[2] |
Trouwborst I, Verreijen A, Memelink R, et al. Exercise and nutrition strategies to counteract sarcopenic obesity[J]. Nutrients, 2018, 10(5):605.
doi: 10.3390/nu10050605 URL |
[3] |
Dulloo AG, Jacquet J, Solinas G, et al. Body composition phenotypes in pathways to obesity and the metabolic syndrome[J]. Int J Obes (Lond), 2010, 34(Suppl 2):S4-S17.
doi: 10.1038/ijo.2010.234 URL |
[4] |
Hong SH, Choi KM. Sarcopenic obesity, insulin resistance, and their implications in cardiovascular and metabolic consequences[J]. Int J Mol Sci, 2020, 21(2):494.
doi: 10.3390/ijms21020494 URL |
[5] |
Al-Sofiani ME, Ganji SS, Kalyani RR. Body composition changes in diabetes and aging[J]. J Diabetes Complications, 2019, 33(6):451-459.
doi: 10.1016/j.jdiacomp.2019.03.007 URL |
[6] |
Albano D, Messina C, Vitale J, et al. Imaging of sarcopenia: old evidence and new insights[J]. Eur Radiol, 2020, 30(4):2199-2208.
doi: 10.1007/s00330-019-06573-2 URL |
[7] |
Koster A, Visser M, Simonsick EM, et al. Association between fitness and changes in body composition and muscle strength[J]. J Am Geriatr Soc, 2010, 58(2):219-226.
doi: 10.1111/j.1532-5415.2009.02681.x URL |
[8] |
Siervogel RM, Wisemandle W, Maynard LM, et al. Serial changes in body composition throughout adulthood and their relationships to changes in lipid and lipoprotein levels. The Fels Longitudinal Study[J]. Arterioscler Thromb Vasc Biol, 1998, 18(11):1759-1764.
doi: 10.1161/01.ATV.18.11.1759 URL |
[9] |
Hughes VA, Frontera WR, Roubenoff R, et al. Longitudinal changes in body composition in older men and wo-men: role of body weight change and physical activity[J]. Am J Clin Nutr, 2002, 76(2):473-481.
doi: 10.1093/ajcn/76.2.473 URL |
[10] |
Wang Z, Xu M, Peng J, et al. Prevalence and associated metabolic factors of fatty liver disease in the elderly[J]. Exp Gerontol, 2013, 48(8):705-709.
doi: 10.1016/j.exger.2013.05.059 URL |
[11] |
Wijarnpreecha K, Panjawatanan P, Aby E, et al. Nonalcoholic fatty liver disease in the over-60s: impact of sarcopenia and obesity[J]. Maturitas, 2019, 124:48-54.
doi: S0378-5122(19)30106-9 pmid: 31097179 |
[12] |
Cha JY, Kim DH, Chun KH. The role of hepatic macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Lab Anim Res, 2018, 34(4):133-139.
doi: 10.5625/lar.2018.34.4.133 URL |
[13] |
Pownall HJ, Schwartz AV, Bray GA, et al. Changes in regional body composition over 8 years in a randomized lifestyle trial: The look AHEAD study[J]. Obesity (Silver Spring), 2016, 24(9):1899-1905.
doi: 10.1002/oby.21577 URL |
[14] |
Hita-Contreras F, Bueno-Notivol J, Martínez-Amat A, et al. Effect of exercise alone or combined with dietary supplements on anthropometric and physical performance measures in community-dwelling elderly people with sarcopenic obesity: a meta-analysis of randomized controlled trials[J]. Maturitas, 2018, 116:24-35.
doi: S0378-5122(18)30416-X pmid: 30244776 |
[15] |
Villareal DT, Chode S, Parimi N, et al. Weight loss, exer-cise, or both and physical function in obese older adults[J]. N Engl J Med, 2011, 364(13):1218-1229.
doi: 10.1056/NEJMoa1008234 URL |
[16] |
Hannah WN Jr, Harrison SA. Effect of weight loss, diet, exercise, and bariatric surgery on nonalcoholic fatty liver disease[J]. Clin Liver Dis, 2016, 20(2):339-350.
doi: 10.1016/j.cld.2015.10.008 URL |
[17] |
Dieli-Conwright CM, Courneya KS, Demark-Wahnefried W, et al. Effects of aerobic and resistance exercise on metabolic syndrome, sarcopenic obesity, and circulating biomarkers in overweight or obese survivors of breast cancer: a randomized controlled trial[J]. J Clin Oncol, 2018, 36(9):875-883.
doi: 10.1200/JCO.2017.75.7526 pmid: 29356607 |
[18] |
Buchwald H, Buchwald JN. Metabolic (bariatric and nonbariatric) surgery for type 2 diabetes: a personal perspective review[J]. Diabetes Care, 2019, 42(2):331-340.
doi: 10.2337/dc17-2654 pmid: 30665965 |
[19] |
Tamboli RA, Hossain HA, Marks PA, et al. Body composition and energy metabolism following Roux-en-Y gastric bypass surgery[J]. Obesity (Silver Spring), 2010, 18(9):1718-1724.
doi: 10.1038/oby.2010.89 URL |
[20] |
Pontiroli AE, Folli F, Paganelli M, et al. Laparoscopic gastric banding prevents type 2 diabetes and arterial hypertension and induces their remission in morbid obesity: a 4-year case-controlled study[J]. Diabetes Care, 2005, 28(11):2703-2709.
pmid: 16249543 |
[21] |
Metcalf B, Rabkin RA, Rabkin JM, et al. Weight loss composition: the effects of exercise following obesity surgery as measured by bioelectrical impedance analysis[J]. Obes Surg, 2005, 15(2):183-186.
doi: 10.1381/0960892053268381 URL |
[22] |
Alba DL, Wu L, Cawthon PM, et al. Changes in lean mass, absolute and relative muscle strength, and physical performance after gastric bypass surgery[J]. J Clin Endocrinol Metab, 2019, 104(3):711-720.
doi: 10.1210/jc.2018-00952 URL |
[23] |
Lassailly G, Caiazzo R, Buob D, et al. Bariatric surgery reduces features of nonalcoholic steatohepatitis in morbidly obese patients[J]. Gastroenterology, 2015, 149(2):379-388,e15-e16.
doi: 10.1053/j.gastro.2015.04.014 URL |
[24] |
Lee Y, Doumouras AG, Yu J, et al. Complete resolution of nonalcoholic fatty liver disease after bariatric surgery: a systematic review and meta-analysis[J]. Clin Gastroenterol Hepatol, 2019, 17(6):1040-1060.
doi: 10.1016/j.cgh.2018.10.017 URL |
[25] |
Immonen H, Hannukainen JC, Kudomi N, et al. Increased liver fatty acid uptake is partly reversed and liver fat content normalized after bariatric surgery[J]. Diabetes Care, 2018, 41(2):368-371.
doi: 10.2337/dc17-0738 pmid: 29158250 |
[26] |
Froylich D, Corcelles R, Daigle C, et al. Effect of Roux-en-Y gastric bypass and sleeve gastrectomy on nonalcoholic fatty liver disease: a comparative study[J]. Surg Obes Relat Dis, 2016, 12(1):127-131.
doi: 10.1016/j.soard.2015.04.004 pmid: 26077701 |
[27] |
Poggiogalle E, Donini LM, Lenzi A, et al. Non-alcoholic fatty liver disease connections with fat-free tissues: a focus on bone and skeletal muscle[J]. World J Gastroenterol, 2017, 23(10):1747-1757.
doi: 10.3748/wjg.v23.i10.1747 URL |
[28] |
Kim JA, Choi KM. Sarcopenia and fatty liver disease[J]. Hepatol Int, 2019, 13(6):674-687.
doi: 10.1007/s12072-019-09996-7 URL |
[29] |
Kalinkovich A, Livshits G. Sarcopenic obesity or obese sarcopenia: a cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mecha-nism of the pathogenesis[J]. Ageing Res Rev, 2017, 35:200-221.
doi: S1568-1637(16)30130-1 pmid: 27702700 |
[30] |
Pacifico L, Perla FM, Chiesa C. Sarcopenia and nonalcoholic fatty liver disease: a causal relationship[J]. Hepatobiliary Surg Nutr, 2019, 8(2):144-147.
doi: 10.21037/hbsn.2018.11.11 URL |
[31] |
Cleasby ME, Jamieson PM, Atherton PJ. Insulin resistance and sarcopenia: mechanistic links between common co-morbidities[J]. J Endocrinol, 2016, 229(2):R67-R81.
doi: 10.1530/JOE-15-0533 URL |
[32] |
Riddle RC, Clemens TL. Insulin, osteoblasts, and energy metabolism: why bone counts calories[J]. J Clin Invest, 2014 Apr; 124(4):1465-1467.
doi: 10.1172/JCI75554 pmid: 24642463 |
[33] |
Karampela I, Christodoulatos GS, Dalamaga M. The role of adipose tissue and adipokines in sepsis: inflammatory and metabolic considerations, and the obesity paradox[J]. Curr Obes Rep, 2019, 8(4):434-457.
doi: 10.1007/s13679-019-00360-2 pmid: 31637623 |
[34] |
Scott IC, Tomlinson W, Walding A, et al. Large-scale isolation of human skeletal muscle satellite cells from post-mortem tissue and development of quantitative assays to evaluate modulators of myogenesis[J]. J Cachexia Sarcopenia Muscle, 2013, 4(2):157-169.
doi: 10.1007/s13539-012-0097-z pmid: 23344890 |
[35] |
Budick-Harmelin N, Dudas J, Demuth J, et al. Triglyce-rides potentiate the inflammatory response in rat Kupffer cells[J]. Antioxid Redox Signal, 2008, 10(12):2009-2022.
doi: 10.1089/ars.2007.1876 URL |
[36] |
Jiang W, Wu N, Wang X, et al. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease[J]. Sci Rep, 2015, 5:8096.
doi: 10.1038/srep08096 URL |
[37] |
Poggiogalle E, Lubrano C, Gnessi L, et al. Fatty liver index associates with relative sarcopenia and GH/IGF-1 status in obese subjects[J]. PLoS One, 2016, 11(1):e0145811.
doi: 10.1371/journal.pone.0145811 URL |
[38] |
Cabrera D, Ruiz A, Cabello-Verrugio C, et al. Diet-induced nonalcoholic fatty liver disease is associated with sarcopenia and decreased serum insulin-like growth factor-1[J]. Dig Dis Sci, 2016, 61(11):3190-3198.
doi: 10.1007/s10620-016-4285-0 URL |
[39] |
Cabrera D, Cabello-Verrugio C, Solís N, et al. Somatotropic axis dysfunction in non-alcoholic fatty liver di-sease: beneficial hepatic and systemic effects of hormone supplementation[J]. Int J Mol Sci, 2018, 19(5):1339.
doi: 10.3390/ijms19051339 URL |
[1] | 苏青,. 糖代谢异常人群筛查非酒精性脂肪性肝病的重要性[J]. 诊断学理论与实践, 2016, 15(04): 342-345. |
[2] | 陈一铭, 沈峰, 范建高,. 细胞角蛋白18在非酒精性脂肪性肝病无创评估中的作用[J]. 诊断学理论与实践, 2014, 13(02): 121-124. |
[3] | 钱乐, 詹维伟,. 非酒精性脂肪性肝病的超声诊断进展[J]. 诊断学理论与实践, 2014, 13(02): 211-215. |
[4] | 宋科秀, 曲伸,. 非酒精性脂肪性肝病线粒体相关的分子通路[J]. 诊断学理论与实践, 2014, 13(02): 125-128. |
[5] | 汪娥, 熊雪莲, 王晓琳, 陆炎, 李小英,. 非诺贝特上调法尼醇X受体转录活性的研究[J]. 诊断学理论与实践, 2014, 13(02): 142-145. |
[6] | 陈玲燕, 刘青, 曲伸,. 非酒精性脂肪性肝病与胰岛素抵抗及糖脂代谢关系的研究[J]. 诊断学理论与实践, 2009, 8(03): 260-263. |
[7] | 曲伸, 刘蒙, 高鑫,. 胰岛素抵抗与非酒精性脂肪性肝病关系的认识[J]. 诊断学理论与实践, 2009, 8(03): 240-243. |
[8] | 陈颖伟, 范建高,. 非酒精性脂肪性肝病的无创伤性诊断[J]. 诊断学理论与实践, 2009, 8(02): 141-143. |
[9] | 杨丹英, 赵雅洁, 赵咏桔,. 高血压非糖尿病男性患者中非酒精性脂肪性肝病患病率及相关危险因素分析[J]. 诊断学理论与实践, 2009, 8(01): 83-86. |
[10] | 陈楠. 肾小球滤过功能检测方法的评估[J]. 诊断学理论与实践, 2003, 2(04): 9-11. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||