诊断学理论与实践 ›› 2022, Vol. 21 ›› Issue (05): 650-654.doi: 10.16150/j.1671-2870.2022.05.019
收稿日期:
2022-06-07
出版日期:
2022-10-25
发布日期:
2023-01-29
通讯作者:
韩峻峰
E-mail:tjhjf@163.com
基金资助:
YE Yafen, YANG Ying, HAN Junfeng()
Received:
2022-06-07
Online:
2022-10-25
Published:
2023-01-29
Contact:
HAN Junfeng
E-mail:tjhjf@163.com
摘要:
脂肪组织协调能量储存和消耗,是维持能量代谢稳态的重要组织结构之一。增龄或细胞内、细胞外部刺激可诱导脂肪祖细胞和干细胞以及成熟脂肪细胞衰老,过程伴随着免疫细胞浸润,白色脂肪组织脂质储存和分解能力下降,棕色和米色脂肪组织产热功能受损,可引发肥胖症和2型糖尿病等代谢性疾病。脂肪组织衰老的干预手段主要包括药物治疗、热量限制以及基因编辑等,目前缺乏较为成熟的治疗方案。因此,对脂肪组织衰老的细胞学改变及其分子机制的研究,有助于全面了解脂肪组织在衰老过程中的动态变化,可为探究衰老相关代谢性疾病的发病机制及开发临床治疗药靶提供理论线索。
中图分类号:
叶雅芬, 杨颖, 韩峻峰. 脂肪组织衰老的细胞学改变及其分子机制研究进展[J]. 诊断学理论与实践, 2022, 21(05): 650-654.
YE Yafen, YANG Ying, HAN Junfeng. Research advances in adipose tissue aging related cytological changes and molecular[J]. Journal of Diagnostics Concepts & Practice, 2022, 21(05): 650-654.
[1] |
Li Q, Hagberg CE, Silva Cascales H, et al. Obesity and hyperinsulinemia drive adipocytes to activate a cell cycle program and senesce[J]. Nat Med, 2021, 27(11):1941-1953.
doi: 10.1038/s41591-021-01501-8 pmid: 34608330 |
[2] |
Santos AL, Sinha S. Obesity and aging: Molecular mechanisms and therapeutic approaches[J]. Ageing Res Rev, 2021, 67:101268.
doi: 10.1016/j.arr.2021.101268 URL |
[3] |
Xu M, Pirtskhalava T, Farr JN, et al. Senolytics improve physical function and increase lifespan in old age[J]. Nat Med, 2018, 24(8):1246-1256.
doi: 10.1038/s41591-018-0092-9 pmid: 29988130 |
[4] |
Frasca D, Blomberg BB. Adipose tissue, immune aging, and cellular senescence[J]. Semin Immunopathol, 2020, 42(5):573-587.
doi: 10.1007/s00281-020-00812-1 URL |
[5] | Camell CD. Adipose tissue microenvironments during aging: Effects on stimulated lipolysis[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2022, 1867(5):159118. |
[6] |
Efthymiou V, Patti ME. It is not just fat: dissecting the heterogeneity of adipose tissue function[J]. Curr Diab Rep, 2022, 22(4):177-187.
doi: 10.1007/s11892-022-01455-2 URL |
[7] |
Ferrero R, Rainer P, Deplancke B. Toward a consensus view of mammalian adipocyte stem and progenitor cell heterogeneity[J]. Trends Cell Biol, 2020, 30(12):937-950.
doi: 10.1016/j.tcb.2020.09.007 pmid: 33148396 |
[8] |
Brigger D, Riether C, van Brummelen R, et al. Eosinophils regulate adipose tissue inflammation and sustain physical and immunological fitness in old age[J]. Nat Metab, 2020, 2(8):688-702.
doi: 10.1038/s42255-020-0228-3 pmid: 32694825 |
[9] |
Dai H, Alsalhe TA, Chalghaf N, et al. The global burden of disease attributable to high body mass index in 195 countries and territories, 1990-2017: an analysis of the global burden of disease study[J]. PLoS Med, 2020, 17(7):e1003198.
doi: 10.1371/journal.pmed.1003198 URL |
[10] |
Palmer AK, Tchkonia T, LeBrasseur NK, et al. Cellular senescence in type 2 diabetes: a therapeutic opportunity[J]. Diabetes, 2015, 64(7):2289-2298.
doi: 10.2337/db14-1820 pmid: 26106186 |
[11] |
Palmer AK, Kirkland JL. Aging and adipose tissue: potential interventions for diabetes and regenerative medicine[J]. Exp Gerontol, 2016, 86:97-105.
doi: S0531-5565(16)30054-7 pmid: 26924669 |
[12] |
Schaum N, Lehallier B, Hahn O, et al. Ageing hallmarks exhibit organ-specific temporal signatures[J]. Nature, 2020, 583(7817):596-602.
doi: 10.1038/s41586-020-2499-y URL |
[13] |
Ou MY, Zhang H, Tan PC, et al. Adipose tissue aging: mechanisms and therapeutic implications[J]. Cell Death Dis, 2022, 13(4):300.
doi: 10.1038/s41419-022-04752-6 URL |
[14] |
Nguyen HP, Lin F, Yi D, et al. Aging-dependent regulatory cells emerge in subcutaneous fat to inhibit adipoge-nesis[J]. Dev Cell, 2021, 56(10):1437-1451,e3.
doi: 10.1016/j.devcel.2021.03.026 pmid: 33878347 |
[15] |
Muir LA, Neeley CK, Meyer KA, et al. Adipose tissue fibrosis, hypertrophy, and hyperplasia: correlations with diabetes in human obesity[J]. Obesity (Silver Spring), 2016, 24(3):597-605.
doi: 10.1002/oby.21377 URL |
[16] |
Miller KN, Burhans MS, Clark JP, et al. Aging and caloric restriction impact adipose tissue, adiponectin, and circulating lipids[J]. Aging Cell, 2017, 16(3):497-507.
doi: 10.1111/acel.12575 pmid: 28156058 |
[17] |
Covarrubias AJ, Kale A, Perrone R, et al. Senescent cells promote tissue NAD+ decline during ageing via the activation of CD38+ macrophages[J]. Nat Metab, 2020, 2(11):1265-1283.
doi: 10.1038/s42255-020-00305-3 pmid: 33199924 |
[18] |
Bruno MEC, Mukherjee S, Powell WL, et al. Accumulation of γδ T cells in visceral fat with aging promotes chronic inflammation[J]. Geroscience, 2022, 44(3):1761-1778.
doi: 10.1007/s11357-022-00572-w URL |
[19] |
Goldberg EL, Shchukina I, Youm YH, et al. IL-33 causes thermogenic failure in aging by expanding dysfunctional adipose ILC2[J]. Cell Metab, 2021, 33(11):2277-2287,e5.
doi: 10.1016/j.cmet.2021.08.004 pmid: 34473956 |
[20] |
Camell CD, Günther P, Lee A, et al. Aging induces an Nlrp3 inflammasome-dependent expansion of adipose B cells that impairs metabolic homeostasis[J]. Cell Metab, 2019, 30(6):1024-1039,e6.
doi: S1550-4131(19)30561-3 pmid: 31735593 |
[21] |
Camell CD, Sander J, Spadaro O, et al. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing[J]. Nature, 2017, 550(7674):119-123.
doi: 10.1038/nature24022 URL |
[22] |
Gohlke S, Zagoriy V, Cuadros Inostroza A, et al. Identification of functional lipid metabolism biomarkers of brown adipose tissue aging[J]. Mol Metab, 2019, 24:1-17.
doi: S2212-8778(18)31191-8 pmid: 31003944 |
[23] |
Song A, Dai W, Jang MJ, et al. Low- and high-thermogenic brown adipocyte subpopulations coexist in murine adipose tissue[J]. J Clin Invest, 2020, 130(1):247-257.
doi: 10.1172/JCI129167 pmid: 31573981 |
[24] |
Simcox J, Geoghegan G, Maschek JA, et al. Global analysis of plasma lipids identifies liver-derived acylcarnitines as a fuel source for brown fat thermogenesis[J]. Cell Metab, 2017, 26(3):509-522,e6.
doi: S1550-4131(17)30491-6 pmid: 28877455 |
[25] |
Tajima K, Ikeda K, Chang HY, et al. Mitochondrial lipoylation integrates age-associated decline in brown fat thermogenesis[J]. Nat Metab, 2019, 1(9):886-898.
doi: 10.1038/s42255-019-0106-z pmid: 32313871 |
[26] |
Chow LS, Gerszten RE, Taylor JM, et al. Exerkines in health, resilience and disease[J]. Nat Rev Endocrinol, 2022, 18(5):273-289.
doi: 10.1038/s41574-022-00641-2 pmid: 35304603 |
[27] |
Lynes MD, Leiria LO, Lundh M, et al. The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue[J]. Nat Med, 2017, 23(5):631-637.
doi: 10.1038/nm.4297 pmid: 28346411 |
[28] |
Stanford KI, Lynes MD, Takahashi H, et al. 12,13-diHOME: an exercise-induced lipokine that increases skeletal muscle fatty acid uptake[J]. Cell Metab, 2018, 27(5):1111-1120,e3.
doi: S1550-4131(18)30241-9 pmid: 29719226 |
[29] |
Brestoff JR, Kim BS, Saenz SA, et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity[J]. Nature, 2015, 519(7542):242-246.
doi: 10.1038/nature14115 URL |
[30] |
Berry DC, Jiang Y, Arpke RW, et al. Cellular aging contributes to failure of cold-induced beige adipocyte formation in old mice and humans[J]. Cell Metab, 2017, 25(1):166-181.
doi: S1550-4131(16)30555-1 pmid: 27889388 |
[31] |
Duteil D, Tosic M, Willmann D, et al. Lsd1 prevents age-programed loss of beige adipocytes[J]. Proc Natl Acad Sci U S A, 2017, 114(20):5265-5270.
doi: 10.1073/pnas.1702641114 URL |
[32] | Xu L, Ma X, Verma N, et al. PPARγ agonists delay age-associated metabolic disease and extend longevity[J]. Aging Cell, 2020, 19(11):e13267. |
[33] |
Hickson LJ, Langhi Prata LGP, et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease[J]. EBioMedicine, 2019, 47:446-456.
doi: S2352-3964(19)30591-2 pmid: 31542391 |
[34] |
Grosse L, Wagner N, Emelyanov A, et al. Defined p16High senescent cell types are indispensable for mouse healthspan[J]. Cell Metab, 2020, 32(1):87-99,e86.
doi: 10.1016/j.cmet.2020.05.002 URL |
[35] |
Corrales P, Vivas Y, Izquierdo-Lahuerta A, et al. Long-term caloric restriction ameliorates deleterious effects of aging on white and brown adipose tissue plasticity[J]. Aging Cell, 2019, 18(3):e12948.
doi: 10.1111/acel.12948 URL |
[36] |
Spadaro O, Youm Y, Shchukina I, et al. Caloric restriction in humans reveals immunometabolic regulators of health span[J]. Science, 2022, 375(6581):671-677.
doi: 10.1126/science.abg7292 pmid: 35143297 |
[37] |
Wang CH, Lundh M, Fu A, et al. CRISPR-engineered human brown-like adipocytes prevent diet-induced obesity and ameliorate metabolic syndrome in mice[J]. Sci Transl Med, 2020, 12(558):eaaz8664.
doi: 10.1126/scitranslmed.aaz8664 URL |
[38] | Ghosh AK, O′Brien M, Mau T, et al. Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging[J]. Aging (Albany NY), 2017, 9(9):1971-1982. |
[1] | 张华, 陆炜, 杨承翌, 项明洁. 血清人衰老关键蛋白1检测对结肠直肠癌的诊断和预后价值[J]. 诊断学理论与实践, 2021, 20(05): 462-465. |
[2] | 张翼飞, 洪洁, 石娟, 顾彬, 王姝洁, 顾卫琼. 多学科诊疗模式在代谢性疾病教学中的应用[J]. 诊断学理论与实践, 2017, 16(04): 449-451. |
[3] | 李俊伟, 夏寒冰, 赵红丽, 刘淑霞. 基于超声测量的心外膜脂肪组织厚度预测冠心病的价值[J]. 诊断学理论与实践, 2017, 16(03): 324-327. |
[4] | 陈国芳, 刘超,. 限食对代谢性疾病的影响及其相关机制[J]. 诊断学理论与实践, 2016, 15(04): 346-349. |
[5] | 桂燕萍, 施仲伟,. 超声测量心外膜脂肪组织厚度在慢性心力衰竭患者中的临床价值[J]. 诊断学理论与实践, 2016, 15(03): 248-252. |
[6] | 邓莉, 宋丹, 张燕, 刘勋,. 肥胖症相关基因rs9939609单核苷酸多态性和肥胖在多囊卵巢综合征中交互作用的研究[J]. 诊断学理论与实践, 2016, 15(03): 308-311. |
[7] | 赵思达, 常春康,. p53与细胞衰老关系的研究进展[J]. 诊断学理论与实践, 2014, 13(06): 636-639. |
[8] | 王伟,. 遗传性代谢疾病的临床检测与基因诊断[J]. 诊断学理论与实践, 2013, 12(04): 401-405. |
[9] | 李淼, 胡伟伟, 张增, 胡云秋, 章振林,. 410名绝经后健康妇女身体成分与骨密度相关性的研究[J]. 诊断学理论与实践, 2012, 11(01): 30-33. |
[10] | 曲伸, 刘蒙, 高鑫,. 胰岛素抵抗与非酒精性脂肪性肝病关系的认识[J]. 诊断学理论与实践, 2009, 8(03): 240-243. |
[11] | 陈名道. 肥胖与胰岛素抵抗的评估[J]. 诊断学理论与实践, 2003, 2(02): 13-14. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||