诊断学理论与实践 ›› 2022, Vol. 21 ›› Issue (06): 691-696.doi: 10.16150/j.1671-2870.2022.06.005
收稿日期:
2023-02-27
出版日期:
2022-12-25
发布日期:
2023-04-23
通讯作者:
缪婕
E-mail:mj11453@rjh.com.cn
基金资助:
SHEN Linhui1, WANG Shuhong2, MIAO Jie1()
Received:
2023-02-27
Online:
2022-12-25
Published:
2023-04-23
Contact:
MIAO Jie
E-mail:mj11453@rjh.com.cn
摘要:
目的:观察脂联素(adiponectin,APN)修饰的内皮祖细胞(endothelial progenitor cell, EPC)对缺血性脑卒中模型小鼠脑组织修复和神经功能恢复的作用。方法:构建表达APN基因的慢病毒并转染EPC,将过表达APN的EPC移植至短暂性大脑中动脉缺血(transient middle cerebral artery occlusion, tMCAO)模型小鼠脑内,即为EPC-APN组,另设EPC组[移植EPC-绿色荧光蛋白(green fluorescent protein, GFP)]及空白对照组(磷酸盐缓冲液处理)。在tMCAO术后1、7、14 d,用焦油紫染色测量梗死面积,并对小鼠进行神经行为学评分;观察tMCAO术后14 d在梗死周边区检测血管新生情况;采用TUNEL检测内源性细胞的凋亡情况。采用蛋白印迹法检测小鼠血管内皮细胞生长因子(vascular endothelial growth factor, VEGF)。结果:成功制备过表达APN的EPC。EPC-APN组小鼠在脑缺血后第14天的脑萎缩体积百分比,较EPC组和空白对照组相比显著减少(7.2%±0.9%比11.6%±1.2%比16.2%±2.1%,P<0.01)。EPC-APN组小鼠的内源性细胞凋亡数目百分比与EPC组及空白对照组相比明显降低(1.0%±0.1%/mm2比2.1%±0.2%/mm2比11.2%±3.2%/mm2,P<0.05);EPC-APN组小鼠的神经行为学评分[改良神经损害严重程度评分(modified neurological severity score, mNSS)]更低[(3.2±0.3)分比(4.5±0.3)分比(5.8±0.4)分,P<0.05];EPC-APN组小鼠脑内的血管新生数目显著增多[(6.2±0.8)个/mm2比(1.8±0.2)个/mm2比(0.2±0.1)个/mm2,P<0.01)。EPC-APN组VEGF蛋白的表达水平较EPC组、空白对照组增加,差异有统计学意义(P<0.05)。结果:移植经APN基因修饰的EPS,能减轻小鼠的缺血性脑损伤,改善其神经功能。
中图分类号:
沈琳辉, 王书鸿, 缪婕. 脂联素基因修饰内皮祖细胞移植对缺血性脑卒中小鼠神经保护作用的研究[J]. 诊断学理论与实践, 2022, 21(06): 691-696.
SHEN Linhui, WANG Shuhong, MIAO Jie. Transplantation of adiponectin-transduced endothelial progenitor cells improves neurobehavioral outcomes following transient middle cerebral artery occlusion[J]. Journal of Diagnostics Concepts & Practice, 2022, 21(06): 691-696.
[1] |
Zhou S, Gao B, Sun C, et al. Vascular Endothelial Cell-derived Exosomes Protect Neural Stem Cells Against Ischemia/reperfusion Injury[J]. Neuroscience, 2020, 441:184-196.
doi: S0306-4522(20)30348-1 pmid: 32502570 |
[2] |
Maki T, Morancho A, Martinez-San Segundo P, et al. Endothelial Progenitor Cell Secretome and Oligovascular Repair in a Mouse Model of Prolonged Cerebral Hypoperfusion[J]. Stroke, 2018, 49(4):1003-1010.
doi: 10.1161/STROKEAHA.117.019346 pmid: 29511131 |
[3] |
Zhou N, Wang L, Fu P, et al. Conditioned medium-preconditioned EPCs enhanced the ability in oligovascular repair in cerebral ischemia neonatal rats[J]. Stem Cell Res Ther, 2021, 12(1):118.
doi: 10.1186/s13287-021-02157-4 pmid: 33579354 |
[4] | Liao S, Luo C, Cao B, et al. Endothelial Progenitor Cells for Ischemic Stroke: Update on Basic Research and Application[J]. Stem Cells Int, 2017, 2017:2193432. |
[5] |
Zhao Y H, Yuan B, Chen J, et al. Endothelial progenitor cells: therapeutic perspective for ischemic stroke[J]. CNS Neurosci Ther, 2013, 19(2):67-75.
doi: 10.1111/cns.12040 pmid: 23230897 |
[6] |
Wang S, Miao J, Qu M, et al. Adiponectin modulates the function of endothelial progenitor cells via AMPK/eNOS signaling pathway[J]. Biochem Biophys Res Commun, 2017, 493(1):64-70.
doi: 10.1016/j.bbrc.2017.09.073 URL |
[7] |
Chan S J, Esposito E, Hayakawa K, et al. Vascular Endothelial Growth Factor 165-Binding Heparan Sulfate Promotes Functional Recovery From Cerebral Ischemia[J]. Stroke, 2020, 51(9):2844-2853.
doi: 10.1161/STROKEAHA.119.025304 pmid: 32772683 |
[8] |
Sun Y, Zhao D, Yang Y, et al. Adiponectin exerts cardioprotection against ischemia/reperfusion injury partially via calreticulin mediated anti-apoptotic and anti-oxidative actions[J]. Apoptosis, 2017, 22(1):108-117.
doi: 10.1007/s10495-016-1304-8 pmid: 27757734 |
[9] |
Liu B, Liu J, Wang J, et al. Adiponectin Protects Against Cerebral Ischemic Injury Through AdipoR1/AMPK Pathways[J]. Front Pharmacol, 2019, 10:597.
doi: 10.3389/fphar.2019.00597 pmid: 31231213 |
[10] |
Issan Y, Hochhauser E, Kornowski R, et al. Endothelial progenitor cell function inversely correlates with long-term glucose control in diabetic patients: association with the attenuation of the heme oxygenase-adiponectin axis[J]. Can J Cardiol, 2012, 28(6):728-736.
doi: 10.1016/j.cjca.2012.01.013 pmid: 22445099 |
[11] |
Miao J, Shen L H, Tang Y H, et al. Overexpression of adiponectin improves neurobehavioral outcomes after focal cerebral ischemia in aged mice[J]. CNS Neurosci Ther, 2013, 19(12):969-977.
doi: 10.1111/cns.12198 pmid: 24164711 |
[12] |
Huang C C, Law Y Y, Liu S C, et al. Adiponectin Promotes VEGF Expression in Rheumatoid Arthritis Synovial Fibroblasts and Induces Endothelial Progenitor Cell Angiogenesis by Inhibiting miR-106a-5p[J]. Cells, 2021, 10(10):2627.
doi: 10.3390/cells10102627 URL |
[13] |
Liu B, Liu J, Wang J, et al. Adiponectin Protects Against Cerebral Ischemic Injury Through AdipoR1/AMPK Pathways[J]. Front Pharmacol, 2019, 10:597.
doi: 10.3389/fphar.2019.00597 pmid: 31231213 |
[14] |
Sun L L, Liu T J, Li L, et al. Transplantation of betatrophin-expressing adipose-derived mesenchymal stem cells induces β-cell proliferation in diabetic mice[J]. Int J Mol Med, 2017, 39(4):936-948.
doi: 10.3892/ijmm.2017.2914 URL |
[15] |
Li D, Yan D, Liu W, et al. Foxc2 overexpression enhances benefit of endothelial progenitor cells for inhibiting neointimal formation by promoting CXCR4-dependent homing[J]. J Vasc Surg, 2011, 53(6):1668-1678.
doi: 10.1016/j.jvs.2011.01.044 pmid: 21514778 |
[16] |
Sun Y, Zhao D, Yang Y, et al. Adiponectin exerts cardioprotection against ischemia/reperfusion injury partially via calreticulin mediated anti-apoptotic and anti-oxidative actions[J]. Apoptosis, 2017, 22(1):108-117.
doi: 10.1007/s10495-016-1304-8 pmid: 27757734 |
[17] |
Liu X H, Yang Y W, Dai H T, et al. Protective role of adiponectin in a rat model of intestinal ischemia reperfusion injury[J]. World J Gastroenterol, 2015, 21(47):13250-13258.
doi: 10.3748/wjg.v21.i47.13250 URL |
[18] |
Tian X Q, Yang Y J, Li Q, et al. Globular Adiponectin Inhibits the Apoptosis of Mesenchymal Stem Cells Induced by Hypoxia and Serum Deprivation via the AdipoR1-Mediated Pathway[J]. Cell Physiol Biochem, 2016, 38(3):909-925.
doi: 10.1159/000443044 URL |
[19] |
Hatakeyama M, Ninomiya I, Kanazawa M. Angiogenesis and neuronal remodeling after ischemic stroke[J]. Neural Regen Res, 2020, 15(1):16-19.
doi: 10.4103/1673-5374.264442 pmid: 31535636 |
[20] |
Jing J, Jiang H, Zhang L. Endothelial progenitor cells promote neural stem cell proliferation in hypoxic conditions through VEGF via the PI3K/AKT pathway[J]. J Recept Signal Transduct Res, 2022, 42(5):479-485.
doi: 10.1080/10799893.2021.2019275 URL |
[1] | 丁效薇, 张如愿, 李然然, 唐海婷. 低体重早产儿内皮祖细胞体外血管生成能力研究[J]. 诊断学理论与实践, 2018, 17(03): 318-321. |
[2] | 沈琳辉, 赵咏桔,. 脂联素的调控机制及其在缺血性脑卒中时的作用[J]. 诊断学理论与实践, 2011, 10(01): 86-90. |
[3] | 陶蕊, 段俊丽, 倪培华, 潘志红, 刘蓓菁, 郑楠,. 辛伐他汀对大鼠高血糖状态缺血后血管新生的影响作用[J]. 诊断学理论与实践, 2008, 7(03): 318-322. |
[4] | 李光庭, 丘创华, 曾伟杰, 欧超伟,. 普伐他汀对血脂异常患者血清脂联素的影响[J]. 诊断学理论与实践, 2008, 7(01): 77-79. |
[5] | 顾佩莉, 赵咏桔, 顾桂国, 蒋晓真, 顾哲,. 2型糖尿病患者血清脂联素水平与大血管病变的关系[J]. 诊断学理论与实践, 2007, 6(03): 240-242. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||