诊断学理论与实践 ›› 2022, Vol. 21 ›› Issue (06): 710-718.doi: 10.16150/j.1671-2870.2022.06.08
李佳曦, 汪锦江, 俞立萍, 袁英, 乔光磊(), 马俐君(
)
收稿日期:
2022-03-17
出版日期:
2022-12-25
发布日期:
2023-04-23
通讯作者:
乔光磊,马俐君
E-mail:732001971@shsmu.edu.cn;QGL3455@shtrhospital.com
基金资助:
LI Jiaxi, WANG Jinjiang, YU Liping, YUAN Ying, QIAO Guanglei(), MA Lijun(
)
Received:
2022-03-17
Online:
2022-12-25
Published:
2023-04-23
Contact:
QIAO Guanglei,MA Lijun
E-mail:732001971@shsmu.edu.cn;QGL3455@shtrhospital.com
摘要:
目的:探讨沉默RAS相关结合蛋白25(ras-associated binding protein 25, RAB25)在结直肠癌(colorectal cancer,CRC)细胞铁死亡中的作用。方法:利用GEPIA(Gene Expression Profiling Interactive Analysis)数据库分析RAB25的表达水平及与铁死亡关键基因表达之间的关联。在CRC细胞系HCT116上构建慢病毒介导的RAB25沉默细胞株(shRAB25),应用定量实时聚合酶链反应(quantitative real-time polymerase chain reaction, qRT-PCR)和蛋白印迹法检测RAB25的表达情况。应用细胞增殖与毒性检测法(CCK8)检测不同浓度的(0~20 μmol/L)铁死亡诱导剂erastin对沉默RAB25后细胞活力的影响;利用荧光显微镜和透射电镜分别观察erastin对沉默RAB25后的细胞形态和线粒体结构的影响;使用C11-BODIPY染色和流式细胞仪检测erastin对沉默RAB25后的细胞脂膜过氧化水平的影响。检测erastin与西妥昔单抗对沉默RAB25后的细胞活力的联合作用。结果:RAB25在CRC中表达升高(P<0.01);RAB25表达与铁死亡关键基因表达明显相关。当erastin≥10 μmol/L时,与阴性对照组(空载慢病毒感染阴性组)相比,RAB25沉默组抑制了铁死亡导致的细胞杀伤(P<0.000 1),细胞形态和线粒体结构更清晰完整;流式细胞术检测结果提示,细胞脂膜过氧化水平明显下降(P<0.000 1)。RAB25表达使erastin和西妥昔单抗对HCT116细胞的联合杀伤作用明显增强。结果:沉默RAB25可抑制erastin诱导的CRC细胞铁死亡;RAB25可协同铁死亡诱导剂erastin诱导铁死亡,增强西妥昔单抗的疗效。
中图分类号:
李佳曦, 汪锦江, 俞立萍, 袁英, 乔光磊, 马俐君. RAB25沉默抑制结直肠癌细胞铁死亡的作用研究[J]. 诊断学理论与实践, 2022, 21(06): 710-718.
LI Jiaxi, WANG Jinjiang, YU Liping, YUAN Ying, QIAO Guanglei, MA Lijun. Effect of RAB25 knockdown on ferroptosis of colorectal cancer cells[J]. Journal of Diagnostics Concepts & Practice, 2022, 21(06): 710-718.
[1] |
Biller L H, Schrag D. Diagnosis and Treatment of metastatic colorectal cancer: a review[J]. JAMA, 2021, 325(7):69-685.
doi: 10.1001/jama.2020.18936 URL |
[2] |
Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of Incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249.
doi: 10.3322/caac.v71.3 URL |
[3] |
Dixon S J, Lembrg K M, Lamprecht M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5):1060-1072.
doi: 10.1016/j.cell.2012.03.042 pmid: 22632970 |
[4] |
Dixon S J, Stockwell B R. The Hallmarks of Ferroptosis[J]. Annual Review of Cancer Biology, 2019, 3(1):35-54.
doi: 10.1146/cancerbio.2019.3.issue-1 URL |
[5] |
Yang W S, Sriramaratnam R, Welsch M E, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1-2):317-331.
doi: 10.1016/j.cell.2013.12.010 pmid: 24439385 |
[6] |
Han W, Duan X, Ni K, et al. Co-delivery of dihydroartemisinin and pyropheophorbide-iron elicits ferroptosis to potentiate cancer immunotherapy[J]. Biomaterials, 2022, 280:121315.
doi: 10.1016/j.biomaterials.2021.121315 URL |
[7] | Li Y, Chen W, Qi Y, et al. H2 S-Scavenged and Activated Iron Oxide-Hydroxide Nanospindles for MRI-Guided Photothermal Therapy and Ferroptosis in Colon Cancer[J]. Small, 2020, 16(37):e2001356. |
[8] |
Zhang C, Liu X, Jin S, et al. Ferroptosis in cancer therapy: a novel approach to reversing drug resistance[J]. Mol Cancer, 2022, 21(1):47.
doi: 10.1186/s12943-022-01530-y pmid: 35151318 |
[9] |
Wang J, Zhou P, Wang X, et al. Rab25 promotes erlotinib resistance by activating the β1 integrin/AKT/β-catenin pathway in NSCLC[J]. Cell Prolif, 2019, 52(3):e12592.
doi: 10.1111/cpr.2019.52.issue-3 URL |
[10] |
Temel S G, Giray A, Karakas B, et al. RAB25 confers resistance to chemotherapy by altering mitochondrial apoptosis signaling in ovarian cancer cells[J]. Apoptosis, 2020, 25(11-12):799-816.
doi: 10.1007/s10495-020-01635-z |
[11] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424.
doi: 10.3322/caac.v68.6 URL |
[12] |
Li J, Cao F, Yin H L, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020, 11(2):88.
doi: 10.1038/s41419-020-2298-2 pmid: 32015325 |
[13] |
Lachaier E, Louandre C, Godin C, et al. Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors[J]. Anticancer Res, 2014, 34(11):6417-6422.
pmid: 25368241 |
[14] |
Chen G Q, Benthani F A, Wu J, et al. Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis[J]. Cell Death Differ, 2020, 27(1):242-254.
doi: 10.1038/s41418-019-0352-3 |
[15] |
Bjarnadottir O, Romero Q, Bendahl P O, et al. Targeting HMG-CoA reductase with statins in a window-of-opportunity breast cancer trial[J]. Breast Cancer Res Treat, 2013, 138(2):499-508.
doi: 10.1007/s10549-013-2473-6 URL |
[16] |
Matsuoka S, Ballif B A, Smogorzewska A, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage[J]. Science, 2007, 316(5828):1160-1166.
doi: 10.1126/science.1140321 pmid: 17525332 |
[17] |
Sleire L, Skeie B S, Netland I A, et al. Drug repurposing: sulfasalazine sensitizes gliomas to gamma knife radiosurgery by blocking cystine uptake through system Xc-, leading to glutathione depletion[J]. Oncogene, 2015, 34(49):5951-5959.
doi: 10.1038/onc.2015.60 pmid: 25798841 |
[18] |
Ye L F, Chaudhary K R, Zandkarimi F, et al. Radiation-Induced Lipid Peroxidation Triggers Ferroptosis and Synergizes with Ferroptosis Inducers[J]. ACS Chem Biol, 2020, 15(2):469-484.
doi: 10.1021/acschembio.9b00939 pmid: 31899616 |
[19] |
Pan X, Lin Z, Jiang D, et al. Erastin decreases radioresistance of NSCLC cells partially by inducing GPX4-mediated ferroptosis[J]. Oncol Lett, 2019, 17(3):3001-3008.
doi: 10.3892/ol.2019.9888 pmid: 30854078 |
[20] |
Lang X, Green M D, Wang W, et al. Radiotherapy and Immunotherapy Promote Tumoral Lipid Oxidation and Ferroptosis via Synergistic Repression of SLC7A11[J]. Cancer Discov, 2019, 9(12):1673-1685.
doi: 10.1158/2159-8290.CD-19-0338 pmid: 31554642 |
[21] |
Papke B, Der C J. Drugging RAS: Know the enemy[J]. Science, 2017, 355(6330):1158-1163.
doi: 10.1126/science.aam7622 pmid: 28302824 |
[22] |
Zhang J, Wei J, Lu J, et al. Overexpression of Rab25 contributes to metastasis of bladder cancer through induction of epithelial-mesenchymal transition and activation of Akt/GSK-3β/Snail signaling[J]. Carcinogenesis, 2013, 34(10):2401-2408.
doi: 10.1093/carcin/bgt187 pmid: 23722651 |
[23] |
Liu L, Ding G. Rab25 expression predicts poor prognosis in clear cell renal cell carcinoma[J]. Exp Ther Med, 2014, 8(4):1055-1058.
pmid: 25187796 |
[24] |
Jeong B Y, Cho K H, Jeong K J, et al. Rab25 augments cancer cell invasiveness through a β1 integrin/EGFR/VEGF-A/Snail signaling axis and expression of fascin[J]. Exp Mol Med, 2018, 50(1):e435.
doi: 10.1038/emm.2017.248 URL |
[25] |
Jo U, Park K H, Whang Y M, et al. EGFR endocytosis is a novel therapeutic target in lung cancer with wild-type EGFR[J]. Oncotarget, 2014, 5(5):1265-1278.
doi: 10.18632/oncotarget.1711 pmid: 24658031 |
[26] |
Geng D, Zhao W, Feng Y, et al. Overexpression of Rab25 promotes hepatocellular carcinoma cell proliferation and invasion[J]. Tumour Biol, 2016, 37(6):7713-7718.
doi: 10.1007/s13277-015-4606-5 URL |
[27] |
Hu C, Chen B, Zhou Y, et al. High expression of Rab25 contributes to malignant phenotypes and biochemical recurrence in patients with prostate cancer after radical prostatectomy[J]. Cancer Cell Int, 2017, 17:45.
doi: 10.1186/s12935-017-0411-0 pmid: 28400705 |
[28] | 关明珺, 任笑云, 王大路, 等. Rab25蛋白在结肠癌中的表达及临床意义[J]. 现代肿瘤医学, 2017, 25(12):1935-1937. |
Guan M J, Ren X Y, Wang D L, et al. The expressions and clinical significance of Rab25 in colon cancer[J]. J Modern Oncol, 2017, 25(12):1935-1937. | |
[29] |
Ding B, Cui B, Gao M, et al. Knockdown of Ras-related protein 25 (Rab25) inhibits the in vitro cytotoxicity and in vivo antitumor activity of human glioblastoma multiforme cells[J]. Oncol Res, 2017, 25(3):331-340.
doi: 10.3727/096504016X14736286083065 pmid: 28281975 |
[30] |
Amornphimoltham P, Rechache K, Thompson J, et al. Rab25 regulates invasion and metastasis in head and neck cancer[J]. Clin Cancer Res, 2013, 19(6):1375-1388.
doi: 10.1158/1078-0432.CCR-12-2858 pmid: 23340300 |
[31] | Cheng J M, Volk L, Janaki D K, et al. Tumor suppressor function of Rab25 in triple-negative breast cancer[J]. Int J Cancer, 2010, 126(12):2799-2812. |
[32] |
Bullman S, Pedamallu C S, Sicinska E, et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer[J]. Science, 2017, 358(6369):1443-1448.
doi: 10.1126/science.aal5240 pmid: 29170280 |
[33] |
Li B, Yang L, Peng X, et al. Emerging mechanisms and applications of ferroptosis in the treatment of resistant cancers[J]. Biomed Pharmacother, 2020, 130:110710.
doi: 10.1016/j.biopha.2020.110710 pmid: 33568263 |
[34] |
Wang X, Kumar R, Navarre J, et al. Regulation of vesicle trafficking in madin-darby canine kidney cells by Rab11a and Rab25[J]. J Biol Chem, 2000, 275(37):29138-29146.
doi: 10.1074/jbc.M004410200 pmid: 10869360 |
[35] |
Mou Y, Wang J, Wu J, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer[J]. J Hematol Oncol, 2019, 12(1):34.
doi: 10.1186/s13045-019-0720-y |
[36] |
Tang Q, Chen H, Mai Z, et al. Bim- and Bax-mediated mitochondrial pathway dominates abivertinib-induced apoptosis and ferroptosis[J]. Free Radic Biol Med, 2022, 180:198-209.
doi: 10.1016/j.freeradbiomed.2022.01.013 URL |
[37] |
Yang J, Mo J, Dai J, et al. Cetuximab promotes RSL3-induced ferroptosis by suppressing the Nrf2/HO-1 signalling pathway in KRAS mutant colorectal cancer[J]. Cell Death Dis, 2021, 12(11):1079.
doi: 10.1038/s41419-021-04367-3 pmid: 34775496 |
[1] | 杨蕊馨, 杜宇童, 燕然林, 朱正纲, 李琛, 于颖彦. 消化道肿瘤单细胞转录组测序研究中生物样本前处理改良的探索[J]. 诊断学理论与实践, 2022, 21(05): 567-574. |
[2] | 汪莉, 梁智勇,. 结肠直肠癌RAS及BRAF基因突变检测的意义[J]. 诊断学理论与实践, 2013, 12(06): 587-590. |
[3] | 马韬, 叶正宝, 于颖彦, 计骏, 赵任, 刘炳亚, 燕敏, 朱正纲,. 胸苷酸合成酶mRNA和二氢嘧啶脱氢酶mRNA在结直肠癌中的表达及临床意义[J]. 诊断学理论与实践, 2006, 5(06): 526-529. |
[4] | 刘玉金,陈克敏,刘林祥. 结、直肠癌术前影像学分期研究进展[J]. 诊断学理论与实践, 2004, 3(03): 85-88. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||