诊断学理论与实践 ›› 2023, Vol. 22 ›› Issue (01): 50-57.doi: 10.16150/j.1671-2870.2023.01.008
钱莹, 马晓波, 高琛妮, 陈孜瑾, 马骏, 俞海瑾, 张文, 陈晓农()
收稿日期:
2022-12-30
出版日期:
2023-02-25
发布日期:
2023-07-06
通讯作者:
陈晓农
E-mail:cxn10419@rjh.com.cn
基金资助:
QIAN Ying, MA Xiaobo, GAO Chenni, CHEN Zijin, MA Jun, YU Haijin, ZHANG Wen, CHEN Xiaonong()
Received:
2022-12-30
Online:
2023-02-25
Published:
2023-07-06
Contact:
CHEN Xiaonong
E-mail:cxn10419@rjh.com.cn
摘要:
目的: 比较亚洲人骨质疏松自我筛查工具(osteoporosis self-screening tool for Asians, OSTA)、世界卫生组织骨折风险评估工具1(fracture risk assessment tool 1, FRAX1)(不包含BMD)和FRAX2(包含BMD)这3种骨折风险评估工具评估维持性血液透析(maintenance hemodialysis, MHD)患者发生骨折风险的效能。方法: 选取2014年12月至2016年12月在上海交通大学医院院附属瑞金医院进行MHD的患者136例,随访36个月,其间收集患者的影像学资料。根据随访中是否发生骨折,将患者分为骨折组与非骨折组,采用双能X射线吸收法(dual-energy X-ray,DXA)测定所有患者腰椎、股骨颈及髋部的骨密度值(bone mineral density, BMD)。根据BMD的测定值以及3种骨折风险评估工具,即OSTA、FRAX1和FRAX2的评估骨折概率计算结果,绘制受试者操作特征曲线(receiver operator characteristic curve,ROC曲线),比较其评估MHD患者发生骨折风险的效能。结果: 136例患者中,男性80例,女性56例,年龄59 (47~67)岁,透析龄55 (26~87)个月,共有16例发生骨折,占11.76%。ROC曲线分析显示,三部位BMD[腰椎(1~4)、股骨颈、全髋]、OSTA、FRAX1及FRAX2评估MHD患者骨折风险的曲线下面积分别为0.669 (95%CI为0.583~0.747)、0.708 (95%CI为0.624~0.783)、0.736 (95%CI为0.654~0.808)、0.686 (95%CI为0.601~0.763)、0.715 (95%CI为0.631~0.789)、0.697 (95%CI为0.613~0.773);三部位BMD最佳临界值分别为0.973 g/cm2、0.719 g/cm2、0.859 g/cm2,而OSTA、FRAXI和FRAX2的最佳临界值为0.2%、3.3%、2.8%。OSTA、FRAX1及FRAX2在评估MHD患者骨折风险的效能间差异无统计学意义,但高于BMD(P<0.05)。结论: 在MHD患者中,OSTA、FRAX1及FRAX2这3种骨折风险评估工具均可用于评估骨折风险。包含了BMD的FRAX2诊断效能并未见优势,故临床在没有条件行BMD检查的情况下,OSTA和FRAX1也适用于MHD患者骨折风险评估。
中图分类号:
钱莹, 马晓波, 高琛妮, 陈孜瑾, 马骏, 俞海瑾, 张文, 陈晓农. 骨折风险评估工具在评估维持性血液透析患者骨折风险中的效能[J]. 诊断学理论与实践, 2023, 22(01): 50-57.
QIAN Ying, MA Xiaobo, GAO Chenni, CHEN Zijin, MA Jun, YU Haijin, ZHANG Wen, CHEN Xiaonong. The diagnostic efficiency and application value of fracture risk assessment tools in maintenance hemodialysis patients[J]. Journal of Diagnostics Concepts & Practice, 2023, 22(01): 50-57.
表1
骨折与非骨折患者特征
Index | Total (n=136) | Non-fracture (n=120) | Fracture (n=16) | P |
---|---|---|---|---|
Age (years) | 59 (47-66.75) | 57 (44.25-64.0) | 69 (60.75-75.75) | 0.001 |
Gender (%, female) | 56 (41.2%) | 50 (41.7%) | 6 (37.5%) | 0.794 |
Duration of HD(months) | 55 (26-86.75) | 52.5 (26.0-81.75) | 78.5 (27.5-122.25) | 0.223 |
Body mass index (kg/cm2) | 21.75 (18.84-23.84) | 21.63 (19.12-23.42) | 22.76 (18.00-24.52) | 0.861 |
Laboratory parameters | ||||
Ca (mmol/L) | 2.33 ± 0.25 | 2.33 ± 0.25 | 2.33 ± 0.29 | 0.979 |
P (mmol/L) | 1.81 ± 0.70 | 1.86 ± 0.70 | 1.50 ± 0.54 | 0.051 |
Alkaline phosphatase (IU/L) | 66.50 (54.00-88.50) | 66.00 (53.00-84.00) | 76.50 (58.00-106.75) | 0.114 |
Parathyroid hormone (ng/L) | 265.90 (145.10-535.42) | 252.7 (141.72-538.58) | 338.8 (146.02-523.18) | 0.762 |
25(OH)D3 (nmol/L) | 41.49 (25.55-65.93) | 41.78 (25.62-65.93) | 36.80 (23.00-80.33) | 0.761 |
Diabetes (%) | 30 (22.1%) | 26 (21.7%) | 4 (25.0%) | 0.763 |
Oral glucocorticoid (%) | 30 (22.1%) | 25 (20.8%) | 5 (31.3%) | 0.346 |
Oral calcitriol (%) | 122(90.4%) | 108(90%) | 14(93.3%) | 0.666 |
BMD | ||||
Lumbar spine (L1-L4) (g/cm2) | 1.16 (1.01-1.27) | 1.16 (1.03-1.28) | 1.02 (0.87-1.20) | 0.028 |
Lumbar spine (L1-L4)(T-score) | -0.10(-0.90-0.88) | -0.05(-0.85-1.00) | -0.80(-2.15-0.80) | 0.084 |
Femoral neck (g/cm2) | 0.81 (0.73-0.93) | 0.83 (0.74-0.95) | 0.73 (0.65-0.85) | 0.006 |
Femoral neck (T-score) | -0.90(-1.60-0.00) | -0.80(-1.50-0.05) | -1.55(-2.2--0.90) | 0.004 |
Total hip (g/cm2) | 0.86 (0.77-0.98) | 0.88 (0.78-0.98) | 0.78 (0.660.85) | 0.002 |
Total hip (T-score) | -0.65(-1.40-0.30) | -0.50(-1.30-0.30) | -1.25(-2.15--0.75) | 0.003 |
OSTA | 0.48 (-2.10-3.00) | 0.80 (-1.95-3.2) | -1.68 (-4.1-0.95) | 0.015 |
FRAX2(%) | 3.55 (2.30-5.28) | 3.2 (2.3-4.9) | 5.3 (3.7-6.28) | 0.005 |
FRAX1(%) | 2.90 (1.80-4.38) | 2.7 (1.6-4.2) | 3.8 (2.95-5.75) | 0.010 |
表2
各骨折评估工具诊断效能比较
Indice | AUC (95%CI) | Cutoff value | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|
L1-L4 BMD (g/cm2) | 0.669 (0.583-0.747) | 0.973 | 50.0 (24.7-75.3) | 85.0 (77.3-90.9) |
Femoral neck BMD (g/cm2) | 0.708 (0.624-0.783) | 0.719 | 50.0 (24.7-75.3) | 82.5 (74.5-88.8) |
Total hip BMD (g/cm2) | 0.736 (0.654-0.808) | 0.859 | 87.5 (61.7-98.4) | 54.2 (44.8-63.3) |
OSTA | 0.686 (0.601-0.763) | 0.2 | 75.0 (47.6-92.7) | 55.0 (45.7-64.1) |
FRAX1(%) | 0.715 (0.631-0.789) | 3.3 | 87.5 (61.7-98.4) | 50.8 (41.6-60.1) |
FRAX2(%) | 0.697 (0.613-0.773) | 2.8 | 81.2 (54.4-96.0) | 52.5 (43.2-61.7) |
[1] |
HAMPSON G, ELDER G J, COHEN-SOLAL M, et al. A review and perspective on the assessment, management and prevention of fragility fractures in patients with osteoporosis and chronic kidney disease[J]. Endocrine, 2021, 73(3):509-529.
doi: 10.1007/s12020-021-02735-9 pmid: 33974225 |
[2] | JAFARI M, ANWAR S, KOUR K, et al. T Scores, FRAX, Frailty Phenotype, Falls, and Its Relationship to Fractures in Patients on Maintenance Hemodialysis[J]. Can J Kidney Health Dis, 2021, 8:20543581211041184. |
[3] |
COHEN-SOLAL M, FUNCK-BRENTANO T, UREÑA TORRES P. Bone fragility in patients with chronic kidney disease[J]. Endocr Connect, 2020, 9(4):R93-R101.
doi: 10.1530/EC-20-0039 URL |
[4] |
Kidney Disease: Improving Global Outcomes KDIGO CKD-MBD Update Work Group. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD)[J]. Kidney Int Suppl, 2017, 7:1-59.
doi: 10.1038/ki.1975.1 URL |
[5] |
LESLIE W D, SCHOUSBOE J T, MORIN S N, et al. Fracture risk following high-trauma versus low-trauma fracture: a registry-based cohort study[J]. Osteoporos Int, 2020, 31(6):1059-1067.
doi: 10.1007/s00198-019-05274-2 pmid: 32173782 |
[6] |
JIRASIRIRAK S, DISTHABANCHONG S, ONGPHIPH-ADHANAKUL B, et al. Prevalence and predictors of asymptomatic vertebral fracture in patients with end-stage renal disease[J]. Heliyon, 2022, 8(3):e09158.
doi: 10.1016/j.heliyon.2022.e09158 URL |
[7] | 中华医学会放射学分会骨关节学组, 中国医师协会放射医师分会肌骨学组, 中华医学会骨科学分会骨质疏松学组, 等. 骨质疏松的影像学与骨密度诊断专家共识[J]. 中国骨质疏松杂志, 2020, 26(9):1249-1256. |
Bone and Joint Group of Chinese Society of Radiology, Chinese Association; Musculoskeletal Radiology Society of Chinese Medical Association; Osteoporosis Group of Chinese Orthopedic Association, Medical Association, et al. Consensus on the diagnosis of osteoporosis by imaging and bone mineral density measurement[J]. Chin J Osteoporos, 2020, 26(9):1249-1256. | |
[8] |
WHITLOCK R H, LESLIE W D, SHAW J, et al. The Fracture Risk Assessment Tool (FRAX®) predicts fracture risk in patients with chronic kidney disease[J]. Kidney Int, 2019, 95(2):447-454.
doi: S0085-2538(18)30775-0 pmid: 30579724 |
[9] |
EL MIEDANY Y. FRAX: re-adjust or re-think[J]. Arch Osteoporos, 2020, 15(1):150.
doi: 10.1007/s11657-020-00827-z pmid: 32989561 |
[10] |
FAN Z, LI X, ZHANG X, et al. Comparison of OSTA, FRAX and BMI for Predicting Postmenopausal Osteoporosis in a Han Population in Beijing: A Cross Sectional Study[J]. Clin Interv Aging, 2020, 15:1171-1180.
doi: 10.2147/CIA.S257166 pmid: 32764904 |
[11] |
YOON H E, LEE Y H, LEE J E, et al. Seasonality in hip fracture among haemodialysis patients and kidney transplant recipients in South Korea[J]. Nephrology (Carlton), 2022, 27(12):925-933.
doi: 10.1111/nep.v27.12 URL |
[12] |
WAKASUGI M, KAZAMA J J, KIKUCHI K, et al. Hemodialysis Product and Hip Fracture in Hemodialysis Patients: A Nationwide Cohort Study in Japan[J]. Ther Apher Dial, 2019, 23(6):507-517.
doi: 10.1111/tap.v23.6 URL |
[13] |
GOTO N A, WESTSTRATE A C G, OOSTERLAAN F M, et al. The association between chronic kidney disease, falls, and fractures: a systematic review and meta-analysis[J]. Osteoporos Int, 2020, 31(1):13-29.
doi: 10.1007/s00198-019-05190-5 pmid: 31720721 |
[14] |
AMBRUS C, ALMASI C, BERTA K, et al. Vitamin D insufficiency and bone fractures in patients on maintenance hemodialysis[J]. Int Urol Nephrol, 2011, 43(2):475-482.
doi: 10.1007/s11255-010-9723-x pmid: 20237846 |
[15] |
IIMORI S, MORI Y, AKITA W, et al. Diagnostic usefulness of bone mineral density and biochemical markers of bone turnover in predicting fracture in CKD stage 5D patients--a single-center cohort study[J]. Nephrol Dial Transplant, 2012, 27(1):345-351.
doi: 10.1093/ndt/gfr317 URL |
[16] | 中华医学会骨科学分会. 骨质疏松性骨折诊疗指南(2022年版)[J]. 中华骨科杂志, 2022, 42(22):1473-1491. |
Chinese Orthopaedic Association. Guidelines for the dia-gnosis and treatment of osteoporotic fractures (2022 edition)[J]. Chin J Orthop, 2022, 42(22):1473-1491. | |
[17] | 张燕妮, 夏梦迪, 王宝福, 等. 初步探讨超声测量BMD、FRAX(R)和OSTA评定维持性血液透析患者骨折风险[J]. 临床肾脏病杂志, 2018, 18(1):38-42. |
ZHANG Y N, XIA M D, WANG B F, et al. Ultrasonic measurement of BMD, FRAX(R) and OSTA in the prediction of fracture risk in maintenance hemodialysis[J]. J Clin Nephrol, 2018, 18(1):38-42. | |
[18] |
PATRO S K, PAWAR N, BISWAS D. A study to predict fracture risk using bone mineral density and FRAX score in patients on chronic maintenance haemodialysis[J]. J Family Med Prim Care, 2022, 11(1):170-175.
doi: 10.4103/jfmpc.jfmpc_901_21 pmid: 35309612 |
[19] | 王琰, 罗静, 苗金红. 血液净化中心维持性血液透析患者骨质疏松危险因素分析及骨折风险预测[J]. 热带医学杂志, 2022, 22(3):373-377. |
WANG Y, LUO J, MIAO J H. Risk factors of osteoporosis in maintenance hemodialysis patients in blood purification center and prediction of fracture risk[J]. J Trop Med, 2022, 22(3):373-377. | |
[20] | 左薇, 费琦, 杨雍, 等. BMD、OSTA与FRAX®预测绝经后女性骨质疏松性骨折风险的比较研究[J]. 中国骨质疏松杂志, 2015(1):48-52. |
ZUO W, FEI Q, YANG Y, et al. Comparative study of BMD, OSTA, and FRAX in the prediction of osteoporotic fracture risk in postmenopausal women[J]. Chin J Osteoporos, 2015, 21(1):48-52. | |
[21] | 朱再胜, 章振林. 骨折风险评估工具(FRAX®)对绝经后低骨量女性骨折的预测价值[J]. 中华骨质疏松和骨矿盐疾病杂志, 2013, 6(3):213-218. |
ZHU Z S, ZHANG Z L. Fracture predictive values of FRAX® for low bone mass of postmenopausal women[J]. Chin J Osteoporos Bone Miner Res, 2013, 6(3):213-218. | |
[22] | JAFARI M, ANWAR S, KOUR K, et al. T Scores, FRAX, Frailty Phenotype, Falls, and Its Relationship to Fractures in Patients on Maintenance Hemodialysis[J]. Can J Kidney Health Dis, 2021, 8:20543581211041184. |
[1] | 赵东宝, 高颖, 贺玲玲,. 骨关节炎与骨质疏松症关系的再认识[J]. 诊断学理论与实践, 2014, 13(03): 237-239+241+240. |
[2] | 王筱婧, 陈瑛, 郁静嘉, 焦培林, 孙立昊, 陶蓓, 宣言, 刘建民, 王卫庆, 赵红燕,. 血清骨钙素水平与绝经后女性2型糖尿病患者骨密度的关系[J]. 诊断学理论与实践, 2014, 13(01): 68-71. |
[3] | 孟迅吾,. 原发性骨质疏松症的危险因素和风险评估[J]. 诊断学理论与实践, 2012, 11(01): 1-4. |
[4] | 李淼, 胡伟伟, 张增, 胡云秋, 章振林,. 410名绝经后健康妇女身体成分与骨密度相关性的研究[J]. 诊断学理论与实践, 2012, 11(01): 30-33. |
[5] | 王赎, 刘建民,. 骨质疏松症的全基因组关联分析进展[J]. 诊断学理论与实践, 2010, 9(05): 518-520. |
[6] | 顾振辉, 付宏亮, 吴靖川, 王辉, 李佳宁,. 甲状腺癌术后碘-131治疗后腰椎骨密度检测分析[J]. 诊断学理论与实践, 2007, 6(05): 451-452. |
[7] | 王鸥, 邢小平, 孟迅吾, 余卫, 夏维波, 李梅, 刘怀成, 胡莹莹, 姜艳, 韩桂艳,. 原发性甲状旁腺功能亢进症患者骨密度及胫骨超声速率的改变[J]. 诊断学理论与实践, 2006, 5(06): 499-502. |
[8] | 孙立昊,刘建民,赵红燕,陈瑛,张连珍,李小英,孔祥银,宁光. 骨保护素基因启动子区单核苷酸多态性与绝经后妇女骨密度的关系[J]. 诊断学理论与实践, 2005, 4(03): 209-212. |
[9] | 顾振辉,杨淑蓉,傅宏亮,李佳宁,吴靖川,李劲松,施海虹,吴斌. 双能X线吸收仪测定骨密度对骨质疏松症的诊断价值[J]. 诊断学理论与实践, 2003, 2(03): 44-46. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||