诊断学理论与实践 ›› 2024, Vol. 23 ›› Issue (02): 108-113.doi: 10.16150/j.1671-2870.2024.02.002
冯原1a,1b,1c,2a(), 何钊1a,1b,1c, 孙青芳2b, 孙伯民2b, 严福华2a, 杨广中1a,1b,1c
收稿日期:
2024-01-29
出版日期:
2024-04-25
发布日期:
2024-07-04
通讯作者:
冯原 E-mail: fengyuan@sjtu.edu.cn基金资助:
FENG Yuan1a,1b,1c,2a(), HE Zhao1a,1b,1c, SUN Qingfang2b, SUN Bomin2b, YAN Fuhua2a, YANG Guangzhong1a,1b,1c
Received:
2024-01-29
Published:
2024-04-25
Online:
2024-07-04
摘要:
介入治疗在神经、血管和乳腺等手术中广泛使用。在影像学检查引导下,机器人辅助的介入治疗可以有效提高介入治疗的精准性和安全性,已成为当前介入手术的重要发展方向。与其他介入成像方法相比,磁共振介入成像(interventional magnetic resonance imaging, i-MRI)具有高软组织对比度、多对比度、可定量成像、无电离辐射等优点,在介入治疗的引导中具有巨大优势。然而,磁共振成像(magnetic resonance imaging,MRI)的成像速度相对较慢,对介入器械的兼容性要求高,是当前i-MRI引导治疗中面临的主要挑战。得益于快速i-MRI以及磁兼容介入设备等技术的发展,i-MRI在神经介入、心血管介入、前列腺介入以及乳腺介入等临床手术中发挥了重要的作用。本文总结i-MRI技术的发展现状及i-MRI的临床应用现状,分析i-MRI目前所面临的成像速度慢和时空分辨率难以平衡等挑战,并对i-MRI在多模态成像、实时MRI以及i-MRI引导下的介入机器人手术等方面的发展机遇进行展望。
中图分类号:
冯原, 何钊, 孙青芳, 孙伯民, 严福华, 杨广中. 磁共振介入成像及其临床应用进展[J]. 诊断学理论与实践, 2024, 23(02): 108-113.
FENG Yuan, HE Zhao, SUN Qingfang, SUN Bomin, YAN Fuhua, YANG Guangzhong. Advances in interventional magnetic resonance imaging and its clinical applications[J]. Journal of Diagnostics Concepts & Practice, 2024, 23(02): 108-113.
表1
i-MRI的临床应用
作者 | 应用场景 | 磁共振 | 实时成像 | 序列 | TR/TE (ms) | 空间分辨率 (mm3) | 成像时间 |
---|---|---|---|---|---|---|---|
He, et al [ | 脑组织介入(人体标本) | 3.0T封闭式 | 是 | 3D GRE radial | 4.58/1.76 | 1.00 | 0.73 s |
He, et al [ | 脑穿刺活检 | 1.0T开放式 | 是 | 2D T1W-FFE | 25/6.91 | 1.29 | 2.9 s |
Lu, et al [ | 脑胶质瘤切除 | 3.0T移动式 | 否 | 3D T1W-MPRAGE | 2 530/2.98 | 1.00 | 20 min |
Larson, et al [ | DBS电极植入 | 1.5T封闭式 | 否 | 3D TSE | 2 000/80 | 1.00 | 54 s |
Razavi, et al [ | 心脏导管术 | 1.5T | 是 | 2D bSSFP | 2.9/1.45 | / | 0.1 s |
Overduin, et al [ | 前列腺穿刺 | 3.0T封闭式 | 是 | 2D bSSFP | 4.16/2.03 | 1.88 | 0.33 s |
Josan, et al [ | 前列腺肿瘤冷冻消融 | 0.5T开放式 | 是 | 2D T1W FSE | 300/10.5 | / | 20 s |
Spick, et al [ | 乳腺穿刺 | 1.5T | 否 | FLASH-3D | 11/4.76 | 0.70 | 58 s |
Hynynen, et al [ | 乳腺纤维肿瘤超声消融 | 1.5T封闭式 | 是 | 2D Fast spoiled gradient-echo | 27.3/13.5 | 0.63 | 3.6 s |
[1] | CAMPBELL-WASHBURN A E, FARANESH A Z, LEDERMAN R J, et al. Magnetic resonance sequences and rapid acquisition for MR-guided interventions[J]. Magn Reson Imaging Clin N Am, 2015, 23(4):669-679. |
[2] |
SCHULZ T, PUCCINI S, SCHNEIDER J P, et al. Interventional and intraoperative MR: review and update of techniques and clinical experience[J]. Eur Radiol, 2004, 14(12):2212-2227.
doi: 10.1007/s00330-004-2496-9 pmid: 15480689 |
[3] |
MUELLER P R, STARK D D, SIMEONE J F, et al. MR-guided aspiration biopsy: needle design and clinical trials[J]. Radiology, 1986, 161(3):605-609.
pmid: 3786706 |
[4] | VAN SONNENBERG E, HAJEK P, GYLYS-MORIN V, et al. A wire-sheath system for MR-guided biopsy and drainage: laboratory studies and experience in 10 patients[J]. AJR, 1988, 151(4):815-817. |
[5] | MATSUMOTO R, SELIG A M, COLUCCI V M, et al. Interstitial Nd-Yag laser ablation in normal rabbit liver- trial to maximize the size of laser-induced lesions[J]. Lasers Surg Med, 1992, 12(6):650-658. |
[6] |
CLINE H E, SCHENCK J F, HYNYNEN K, et al. MR-guided focused ultrasound surgery[J]. J Comput Assist Tomogr, 1992, 16(6):956-965.
pmid: 1430448 |
[7] |
NIMSKY C, GANSLANDT O, VON KELLER B, et al. Intraoperative high-field-strength MR imaging: implementation and experience in 200 patients[J]. Radiology, 2004, 233(1):67-78.
pmid: 15317949 |
[8] | 李麟荪, 张学彬. 我国介入放射学新里程碑——磁共振介入治疗[J]. 介入放射学杂志, 2019, 28(11):1015-1016. |
LI L S, ZHANG X B. A new milestone in interventional radiology in China: magnetic resonance-guided interventional therapy[J]. J Int Radiol, 2019, 28(11):1015-1016. | |
[9] | 李成利. 磁共振介入应用与前景[J]. 介入放射学杂志, 2019, 28(11):1017-1019. |
LI C L. The clinical application and prospect of interventional MRI景[J]. J Int Radiol, 2019, 28(11):1017-1019. | |
[10] |
SCHENCK J F, JOLESZ F A, ROEMER P B, et al. Superconducting open-configuration MR imaging system for image-guided therapy[J]. Radiology, 1995, 195(3):805-814.
pmid: 7754014 |
[11] | LARSON P S, STARR P A, BATES G, et al. An optimized system for interventional magnetic resonance ima-ging-guided stereotactic surgery: preliminary evaluation of targeting accuracy[J]. Neurosurgery, 2012, 70(1 Suppl Ope-rative):95-103. |
[12] | RAZAVI R, HILL D L, KEEVIL S F, et al. Cardiac cathe-terisation guided by MRI in children and adults with congenital heart disease[J]. Lancet, 2003, 362(9399):1877-1882. |
[13] |
HYNYNEN K, POMEROY O, SMITH D N, et al. MR imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study[J]. Radiology, 2001, 219(1):176-185.
pmid: 11274554 |
[14] | LUSTIG M, DONOHO D L, SANTOS J M, et al. Compressed sensing MRI[J]. IEEE Signal Proc Mag, 2008, 25(2):72-82. |
[15] | UNTERBERG-BUCHWALD C, RITTER C O, REUPKE V, et al. Targeted endomyocardial biopsy guided by real-time cardiovascular magnetic resonance[J]. J Cardiovasc Magn Reson, 2017, 19(1):45. |
[16] | HE Z, ZHU Y N, QIU S, et al. Low-rank and framelet based sparsity decomposition for interventional MRI reconstruction[J]. IEEE Trans Biomed Eng, 2022, 69(7):2294-2304. |
[17] | WANG G, YE J C, DE MAN B. Deep learning for tomographic image reconstruction[J]. Nat Mach Intell, 2020, 2(12):737-748. |
[18] | LIANG D, CHENG J, KE Z, et al. Deep magnetic resonance image reconstruction: inverse problems meet neural networks[J]. IEEE Signal Process Mag, 2020, 37(1):141-151. |
[19] |
HE Z, ZHU Y N, CHEN Y, et al. A deep unrolled neural network for real-time MRI-guided brain intervention[J]. Nat Commun, 2023, 14(1):8257.
doi: 10.1038/s41467-023-43966-w pmid: 38086851 |
[20] | REICHERT A, REISS S, KRAFFT A J, et al. Passive needle guide tracking with radial acquisition and phase-only cross-correlation[J]. Magn Reson Med, 2021, 85(2):1039-1046. |
[21] |
OMARY R A, UNAL O, KOSCIELSKI D S, et al. Real-time MR imaging-guided passive catheter tracking with use of gadolinium-filled catheters[J]. J Vasc Interv Radiol, 2000, 11(8):1079-1085.
doi: 10.1016/s1051-0443(07)61343-8 pmid: 10997475 |
[22] |
WANG W. Magnetic Resonance-guided Active Catheter Tracking[J]. Magn Reson Imaging Clin N Am, 2015, 23(4):579-589.
doi: 10.1016/j.mric.2015.05.009 pmid: 26499276 |
[23] | CHUBB H, HARRISON J L, WEISS S, et al. Development, preclinical validation, and clinical translation of a cardiac magnetic resonance - electrophysiology system with active catheter tracking for ablation of cardiac arrhythmia[J]. JACC Clin Electrophysiol, 2017, 3(2):89-103. |
[24] |
KETTENBACH J, KACHER D F, KANAN A R, et al. Intraoperative and interventional MRI: recommendations for a safe environment[J]. Minim Invasive Ther Allied Technol, 2006, 15(2):53-64.
doi: 10.1080/13645700600640774 pmid: 16754187 |
[25] |
HE X, LIU M, LIU C, et al. Real-time MR-guided brain biopsy using 1.0-T open MRI scanner[J]. Eur Radiol, 2019, 29(1):85-92.
doi: 10.1007/s00330-018-5531-y pmid: 29948073 |
[26] | LU C Y, CHEN X L, CHEN X L, et al. Clinical application of 3.0 T intraoperative magnetic resonance combined with multimodal neuronavigation in resection of cerebral eloquent area glioma[J]. Medicine (Baltimore), 2018, 97(34):e11702. |
[27] |
OSTREM J L, ZIMAN N, GALIFIANAKIS N B, et al. Clinical outcomes using ClearPoint interventional MRI for deep brain stimulation lead placement in Parkinson's disease[J]. J Neurosurg, 2016, 124(4):908-916.
doi: 10.3171/2015.4.JNS15173 pmid: 26495947 |
[28] |
KILBRIDE B F, NARSINH K H, JORDAN C D, et al. MRI-guided endovascular intervention: current methods and future potential[J]. Expert Rev Med Devices, 2022, 19(10):763-778.
doi: 10.1080/17434440.2022.2141110 pmid: 36373162 |
[29] | MASOOM S N, SUNDARAM K M, GHANOUNI P, et al. Real-time MRI-guided prostate interventions[J]. Cancers (Basel), 2022, 14(8):1860. |
[30] |
OVERDUIN C G, HEIDKAMP J, ROTHGANG E, et al. Fast 3-T MR-guided transrectal prostate biopsy using an in-room tablet device for needle guide alignment: a feasibility study[J]. Eur Radiol, 2018, 28(11):4824-4831.
doi: 10.1007/s00330-018-5497-9 pmid: 29789909 |
[31] |
KLOTZ L, PAVLOVICH C P, CHIN J, et al. Magnetic resonance imaging-guided transurethral ultrasound ablation of prostate cancer[J]. J Urol, 2021, 205(3):769-779.
doi: 10.1097/JU.0000000000001362 pmid: 33021440 |
[32] |
LEHMAN C D, ISAACS C, SCHNALL M D, et al. Cancer yield of mammography, MR, and US in high-risk women: prospective multi-institution breast cancer screening study[J]. Radiology, 2007, 244(2):381-388.
doi: 10.1148/radiol.2442060461 pmid: 17641362 |
[33] |
LEE C H, DERSHAW D D, KOPANS D, et al. Breast cancer screening with imaging: recommendations from the Society of Breast Imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer[J]. J Am Coll Radiol, 2010, 7(1):18-27.
doi: 10.1016/j.jacr.2009.09.022 pmid: 20129267 |
[34] |
SPICK C, SCHERNTHANER M, PINKER K, et al. MR-guided vacuum-assisted breast biopsy of MRI-only lesions: a single center experience[J]. Eur Radiol, 2016, 26(11):3908-3916.
pmid: 26984430 |
[35] | 邢宁, 张爱莲, 王建东, 等. MRI引导下乳腺病灶真空辅助穿刺活检术的应用[J]. 中国介入影像与治疗学, 2014, 11(3):136-140. |
XING N, ZHANG A L, WANG J D, et al. Application of MRI-guided vacuum-assisted breast biopsy[J]. Chin J Interv Imag Ther, 2014, 11(3):136-140. | |
[36] |
GIANFELICE D, KHIAT A, BOULANGER Y, et al. Feasibility of magnetic resonance imaging-guided focused ultrasound surgery as an adjunct to tamoxifen therapy in high-risk surgical patients with breast carcinoma[J]. J Vasc Interv Radiol, 2003, 14(10):1275-1282.
pmid: 14551274 |
[37] |
JOSAN S, BOULEY D M, VAN DEN BOSCH M, et al. MRI-guided cryoablation: In vivo assessment of focal canine prostate cryolesions[J]. J Magn Reson Imaging, 2009, 30(1):169-176.
doi: 10.1002/jmri.21827 pmid: 19557805 |
[1] | 王砚春, 卢仁泉. 出凝血检测在肿瘤患者中的应用价值探讨[J]. 诊断学理论与实践, 2023, 22(04): 341-347. |
[2] | 陈英杰, 刘霄宇, 吴卓卓, 王忠敏. PBL教学模式在本科生教学下肢血管介入治疗课程中的应用[J]. 诊断学理论与实践, 2021, 20(03): 302-304. |
[3] | 游利. 重视骨转换指标的临床应用及评估[J]. 诊断学理论与实践, 2020, 19(03): 214-218. |
[4] | 陈辰, 张月, 胡晓波. 尿路感染报警信息阈值设置和临床应用评价[J]. 诊断学理论与实践, 2020, 19(02): 168-171. |
[5] | 余红, 王一飞, 陈佳, 陈洁, 李斌. 青蒿素及其衍生物在皮肤疾病中的作用机制研究及临床应用[J]. 诊断学理论与实践, 2019, 18(2): 233-236. |
[6] | 上海市医学会分子诊断专科分会, 上海市临床检验中心, 上海东方肝胆外科医院, 中华医学会检验医学分会临床免疫学组, 中国中西医结合检验学会肝病学术委员会, 全军肝胆外科专业委员会, 上海免疫学会肿瘤免疫分会, 上海抗癌协会肿瘤标志物分会. 多学科甲胎蛋白异质体临床应用专家共识[J]. 诊断学理论与实践, 2018, 17(01): 19-24. |
[7] | 朱巍巍, 万颖蕾, 刘锦燕, 张华, 陈华, 项明洁. 内毒素的检测方法与临床应用进展[J]. 诊断学理论与实践, 2017, 16(06): 668-671. |
[8] | 彭奕冰, 章黎华. 免疫球蛋白游离轻链的检测与临床应用[J]. 诊断学理论与实践, 2017, 16(05): 468-471. |
[9] | 席锐, 顾刚, 陶蓉,. 经皮冠状动脉介入治疗患者围手术期TnI升高的相关因素分析[J]. 诊断学理论与实践, 2013, 12(02): 175-178. |
[10] | 沈立松, 马妍慧,. 质谱技术在检验医学中的应用现状和前景[J]. 诊断学理论与实践, 2012, 11(05): 536-538. |
[11] | 舒先红, 潘翠珍,. 超声心动图在先天性心脏病介入治疗中的应用[J]. 诊断学理论与实践, 2008, 7(02): 135-137. |
[12] | 李彪,朱承谟. 正电子放射性药物的临床应用与进展[J]. 诊断学理论与实践, 2005, 4(02): 93-95. |
[13] | 朱承谟. 积极开展PET、SPECT显像的临床应用和研究[J]. 诊断学理论与实践, 2005, 4(02): 89-90. |
[14] | 王鸿利. 血液学实验诊断的现状特点与应用价值[J]. 诊断学理论与实践, 2004, 3(06): 5-7. |
[15] | 康熙雄,王雅杰,张锟. 蛋白质组学及其临床应用[J]. 诊断学理论与实践, 2004, 3(05): 14-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||