诊断学理论与实践 ›› 2024, Vol. 23 ›› Issue (05): 509-516.doi: 10.16150/j.1671-2870.2024.05.007
收稿日期:
2024-08-11
接受日期:
2024-10-08
出版日期:
2024-10-25
发布日期:
2025-02-25
通讯作者:
吴涛 E-mail:wutaozhen@yeah.net基金资助:
AN Huihui1,2, WU Tao1,2(), LIU Wenhui2, TIAN Sirui2
Received:
2024-08-11
Accepted:
2024-10-08
Published:
2024-10-25
Online:
2025-02-25
摘要:
目的:分析循环炎症蛋白与急性髓系白血病(acute myeloid leukemia,AML)发生风险间的相关性。方法:从FinnGen联盟获取AML数据,以91种循环炎症蛋白的全基因组关联研究(Genome-Wide Association Studies,GWAS)数据作为暴露因素,使用孟德尔随机化(Mendelian randomization,MR)分析评估91种循环炎症蛋白对AML发生风险的影响。采用逆方差加权法(Inverse Variance Weighted,IVW)作为主要分析方法,用MR-Egger和加权中位数(Weighted Median,WM)方法进一步强化结果。此外,用敏感性分析评估结果的稳定性和可靠性。结果:91种循环炎症蛋白中有8种与AML的发生有因果关联(P<0.05)。其中,神经鞘胚素(artemin,ARTN)(OR=0.458 3,95%CI为0.219 0~0.959 1)、白细胞介素(interleukin, IL)-2受体β(OR=0.2347,95%CI为0.094 1~0.585 3)、沉默蛋白2(sirtuin-2,SIRT2)(OR=0.310 4,95%CI为0.138 0~0.698 2)、信号转导接头分子结合蛋白(signal-transducing adaptor mo-lecule binding protein,STAMPB) (OR=0.289 0,95%CI为0.104 9~0.796 1)水平升高与AML发生风险降低相关;而CD6(OR=3.269 3,95%CI为1.285 3~8.315 9)、趋化因子配体5(C-X-C motif chemokine ligand 5,CXCL5)(OR=1.694 6,95%CI为1.013 4~2.833 6)、IL-15受体α (OR=1.572 9,95%CI为1.050 0~2.344 8)、基质金属蛋白酶(matrix metalloproteinase,MMP)-10(OR=1.882 0,95%CI为1.061 4~3.337 1)水平升高与AML发生风险升高相关。使用Cochran’s Q检验(P>0.05)和MR-Egger回归检验(P>0.05)进行敏感性分析,结果显示炎症蛋白的单核苷酸多态性(singlenucleotide polymorphisms,SNP)之间没有异质性和多效性。结论:基于MR研究提示,循环炎症蛋白ARTN、IL-2RB、SIRT2和STAMPB水平与AML发生风险呈负相关,CD6、CXCL5、IL-15RA和MMP-10水平与AML发生风险呈正相关,为今后AML的病理机制研究提供一定的参考信息。
中图分类号:
安慧慧, 吴涛, 刘文慧, 田思锐. 91种炎症蛋白水平与急性髓系白血病发病风险相关的孟德尔随机化研究[J]. 诊断学理论与实践, 2024, 23(05): 509-516.
AN Huihui, WU Tao, LIU Wenhui, TIAN Sirui. A Mendelian randomized study on the correlation between 91 inflammatory protein levels and the risk of acute myeloid leukemia[J]. Journal of Diagnostics Concepts & Practice, 2024, 23(05): 509-516.
表1
循环炎症蛋白和急性髓系白血病发生风险的孟德尔随机化分析结果
Exposure | Outcomes | SNPs | IVW | MR-Egger | Weighted median | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SE | OR (95%CI) | P | SE | OR (95%CI) | P | SE | OR (95%CI) | P | |||||
ARTN | AML | 14 | 0.3768 | 0.4583(0.2190-0.9591) | 0.0384 | 0.8732 | 0.3252(0.0587-1.8007) | 0.2226 | 0.5050 | 0.3688(0.1371-0.9922) | 0.0482 | ||
CD6 | AML | 6 | 0.4763 | 3.2693(1.2853-8.3159) | 0.0129 | 1.7673 | 2.4846(0.0778-79.3565) | 0.6337 | 0.5444 | 3.1903(1.0975-9.2740) | 0.0331 | ||
CXCL5 | AML | 11 | 0.2623 | 1.6946(1.0134-2.8336) | 0.0443 | 0.3990 | 1.5728(0.7196-3.4377) | 0.2857 | 0.2694 | 1.7337(1.0224-2.9397) | 0.0411 | ||
IL-15RA | AML | 9 | 0.2037 | 1.5729(1.0550-2.3448) | 0.0262 | 0.3623 | 0.8618(0.4237-1.7531) | 0.6937 | 0.2276 | 1.4059(0.9000-2.1962) | 0.1344 | ||
IL-2RB | AML | 11 | 0.4662 | 0.2347(0.0941-0.5853) | 0.0019 | 0.9384 | 0.5465(0.0869-3.4385) | 0.5357 | 0.6405 | 0.3298(0.0940-1.1573) | 0.0833 | ||
MMP-10 | AML | 11 | 0.2922 | 1.8820(1.0614-3.3371) | 0.0305 | 0.4725 | 1.6175(0.6407-4.0836) | 0.3354 | 0.3657 | 1.7830(0.8707-3.6512) | 0.1138 | ||
SIRT2 | AML | 11 | 0.4136 | 0.3104(0.1380-0.6982) | 0.0047 | 0.8396 | 0.1697(0.0327-0.8798) | 0.0638 | 0.5670 | 0.2611(0.0859-0.7935) | 0.0179 | ||
STAMPB | AML | 10 | 0.5171 | 0.2890(0.1049-0.7961) | 0.0164 | 1.5349 | 0.2560(0.0126-5.1855) | 0.4006 | 0.7170 | 0.2570(0.0630-1.0477) | 0.0581 |
表2
循环炎症蛋白和急性髓系白血病发生风险的敏感性分析结果
exposure | Outcomes | SNPs | Cochran’s Q test | MR-Egger intercept | MR-Presso | |||||
---|---|---|---|---|---|---|---|---|---|---|
IVW | MR Egger | Egger intercept | P | Global Test RSSobs | P | |||||
ARTN | AML | 14 | 10.7366 | 10.5471 | 0.0349 | 0.6711 | 12.2728 | 0.6667 | ||
CD6 | AML | 6 | 1.4264 | 1.4004 | 0.0242 | 0.8797 | 0.9447 | 0.9447 | ||
CXCL5 | AML | 11 | 12.5723 | 12.4797 | 0.0170 | 0.8019 | 13.4745 | 0.4093 | ||
IL-15RA | AML | 9 | 7.0478 | 3.0151 | 0.1516 | 0.0846 | 16.1052 | 0.4327 | ||
IL-2RB | AML | 11 | 7.7765 | 6.6991 | -0.1012 | 0.3264 | 9.3245 | 0.6887 | ||
MMP-10 | AML | 11 | 10.1907 | 9.9951 | 0.0315 | 0.6845 | 11.2204 | 0.5253 | ||
SIRT2 | AML | 11 | 10.4870 | 9.7401 | 0.0838 | 0.4276 | 12.7845 | 0.4190 | ||
STAMPB | AML | 10 | 8.5948 | 8.5872 | 0.0148 | 0.9350 | 10.8371 | 0.4917 |
[1] | 章新, 郑莹. 2005—2020年中国国家及分省疾病监测点的肿瘤死亡疾病负担数据解读[J]. 诊断学理论与实践, 2024, 23(4):371-377. |
ZHANG X, ZHENG Y. Interpretation of cancer death burden data from disease surveillance sites in China from 2005 to 2020[J]. J Diagn Concepts Pract, 2024, 23(4):371-377. | |
[2] | DE KOUCHKOVSKY I, ABDUL-HAY M. Acute myeloid leukemia: a comprehensive review and 2016 update[J]. Blood Cancer J, 2016, 6(7):e441. |
[3] |
DÖHNER H, ESTEY E H, AMADORI S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet[J]. Blood, 2010, 115(3):453-474.
doi: 10.1182/blood-2009-07-235358 pmid: 19880497 |
[4] |
WHITELEY A E, PRICE T T, CANTELLI G, et al. Leukaemia: a model metastatic disease[J]. Nat Rev Cancer, 2021, 21(7):461-475.
doi: 10.1038/s41568-021-00355-z pmid: 33953370 |
[5] |
DINARELLO C A. Anti-inflammatory agents: present and future[J]. Cell, 2010, 140(6):935-950.
doi: 10.1016/j.cell.2010.02.043 pmid: 20303881 |
[6] |
ZHAO J H, STACEY D, ERIKSSON N, et al. Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets[J]. Nat Immunol, 2023, 24(9):1540-1551.
doi: 10.1038/s41590-023-01588-w pmid: 37563310 |
[7] | ELLEGAST J M, ALEXE G, HAMZE A, et al. Unleas-hing cell-intrinsic inflammation as a strategy to kill aml blasts[J]. Cancer Discov, 2022, 12(7):1760-1781. |
[8] |
BOWDEN J, HOLMES M V. Meta-analysis and Mendelian randomization: a review[J]. Res Synth Methods, 2019, 10(4):486-496.
doi: 10.1002/jrsm.1346 pmid: 30861319 |
[9] |
ZHU M, MA Z, ZHANG X, et al. C-reactive protein and cancer risk: a pan-cancer study of prospective cohort and Mendelian randomization analysis[J]. BMC Med, 2022, 20(1):301.
doi: 10.1186/s12916-022-02506-x pmid: 36117174 |
[10] |
WANG Q, SHI Q, WANG Z, et al. Integrating plasma proteomes with genome-wide association data for causal protein identification in multiple myeloma[J]. BMC Med, 2023, 21(1):377.
doi: 10.1186/s12916-023-03086-0 pmid: 37775746 |
[11] | CHEN J, XU F, RUAN X, et al. Therapeutic targets for inflammatory bowel disease: proteome-wide Mendelian randomization and colocalization analyses[J]. EBioMedicine, 2023,89:104494. |
[12] | KURKI M I, KARJALAINEN J, PALTA P, et al. FinnGen provides genetic insights from a well-phenotyped isolated population[J]. Nature, 2023, 613(7944):508-518. |
[13] |
SEKULA P, DEL GRECO M F, PATTARO C, et al. Mendelian randomization as an approach to assess causality using observational data[J]. J Am Soc Nephrol, 2016, 27(11):3253-3265.
pmid: 27486138 |
[14] | DAVIES N M, HOLMES M V, DAVEY SMITH G. Rea-ding Mendelian randomisation studies: a guide, glossary, and checklist for clinicians[J]. BMJ, 2018,362:k601. |
[15] |
STALEY J R, BLACKSHAW J, KAMAT M A, et al. PhenoScanner: a database of human genotype-phenotype associations[J]. Bioinformatics, 2016, 32(20):3207-3209.
pmid: 27318201 |
[16] |
SEKULA P, DEL GRECO M F, PATTARO C, et al. Mendelian randomization as an approach to assess causality using observational data[J]. J Am Soc Nephrol, 2016, 27(11):3253-3265.
pmid: 27486138 |
[17] |
BOWDEN J, DEL GRECO M F, MINELLI C, et al. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization[J]. Stat Med, 2017, 36(11):1783-1802.
doi: 10.1002/sim.7221 pmid: 28114746 |
[18] |
BURGESS S, THOMPSON S G. Interpreting findings from Mendelian randomization using the MR-Egger method[J]. Eur J Epidemiol, 2017, 32(5):377-389.
doi: 10.1007/s10654-017-0255-x pmid: 28527048 |
[19] |
BOWDEN J, DAVEY SMITH G, HAYCOCK P C, et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator[J]. Genet Epidemiol, 2016, 40(4):304-314.
doi: 10.1002/gepi.21965 pmid: 27061298 |
[20] | HEMANI G, BOWDEN J, DAVEY SMITH G. Evaluating the potential role of pleiotropy in Mendelian randomization studies[J]. Hum Mol Genet, 2018, 27(R2):R195-R208. |
[21] |
VERBANCK M, CHEN CY, NEALE B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases[J]. Nat Genet, 2018, 50(5):693-698.
doi: 10.1038/s41588-018-0099-7 pmid: 29686387 |
[22] | GIL-LIANES J, LUQUE-LUNA M, ALAMON-REIG F, et al. Sweet syndrome: clinical presentation, malignancy association, autoinflammatory disorders and treatment Response in a Cohort of 93 Patients with Long-term Follow-up[J]. Acta Derm Venereol, 2023,103:adv18284. |
[23] | KRISTINSSON S Y, BJÖRKHOLM M, HULTCRANTZ M, et al. Chronic immune stimulation might act as a trigger for the development of acute myeloid leukemia or mye-lodysplastic syndromes[J]. J Clin Oncol, 2011, 29(21):2897-2903. |
[24] |
INOUE T, HIRATSUKA M, OSAKI M, et al. The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation[J]. Cell Cycle, 2007, 6(9):1011-1018.
doi: 10.4161/cc.6.9.4219 pmid: 17457050 |
[25] |
NAKAGAWA T, GUARENTE L. Sirtuins at a glance[J]. J Cell Sci, 2011, 124(Pt 6):833-838.
doi: 10.1242/jcs.081067 pmid: 21378304 |
[26] | RUSSO C, MAUGERI A, DE LUCA L, et al. The SIRT2 pathway is involved in the antiproliferative effect of flavanones in human leukemia monocytic THP-1 cells[J]. Biomedicines, 2022, 10(10):2383. |
[27] | STRZALKA P, KRAWIEC K, JARYCH D, et al. Assessment of SIRT1-SIRT7 and TP53 genes expression in patients with acute myeloid leukemia[J]. Blood, 2023,142:6048. |
[28] | DENG A, NING Q, ZHOU L, et al. SIRT2 is an unfavo-rable prognostic biomarker in patients with acute myeloid leukemia[J]. Sci Rep, 2016,6:27694. |
[29] |
XU H, LI Y, CHEN L, et al. SIRT2 mediates multidrug resistance in acute myelogenous leukemia cells via ERK1/2 signaling pathway[J]. Int J Oncol, 2016, 48(2):613-623.
doi: 10.3892/ijo.2015.3275 pmid: 26647771 |
[30] | LUO Y, ZHAO H, ZHU J, et al. SIRT2 inhibitor SirReal2 enhances anti-tumor effects of PI3K/mTOR inhibitor VS-5584 on acute myeloid leukemia cells[J]. Cancer Med, 2023, 12(18):18901-18917. |
[31] | HEZAM K, JIANG J, SUN F, et al. Artemin promotes oncogenicity, metastasis and drug resistance in cancer cells[J]. Rev Neurosci, 2018, 29(1):93-98. |
[32] | BANERJEE A, WU Z S, QIAN P, et al. ARTEMIN synergizes with TWIST1 to promote metastasis and poor survival outcome in patients with ER negative mammary carcinoma[J]. Breast Cancer Res, 2011, 13(6):R112. |
[33] |
JIANG X, CHEN K, FAN K, et al. Prognostic significance of artemin in gastric cancer and its role in tumorigenesis[J]. Transl Cancer Res, 2020, 9(1):12-20.
doi: 10.21037/tcr.2019.11.13 pmid: 35117153 |
[34] | WANG X H, LIU Y N, TIAN K, et al. Expression and clinical significance of ARTN and MMP-9 in endometrial carcinoma[J]. J Biol Regul Homeost Agents, 2017, 31(4):879-887. |
[35] |
XU H, YANG X, XUAN X, et al. STAMBP promotes lung adenocarcinoma metastasis by regulating the EGFR/MAPK signaling pathway[J]. Neoplasia, 2021, 23(6):607-623.
doi: 10.1016/j.neo.2021.05.011 pmid: 34102455 |
[36] |
YANG Q, YAN D, ZOU C, et al. The deubiquitinating enzyme STAMBP is a newly discovered driver of triple-negative breast cancer progression that maintains RAI14 protein stability[J]. Exp Mol Med, 2022, 54(11):2047-2059.
doi: 10.1038/s12276-022-00890-1 pmid: 36434041 |
[37] | KITTANG A O, SAND K, BRENNER A K, et al. The systemic profile of soluble immune mediators in patients with myelodysplastic syndromes[J]. Int J Mol Sci, 2016, 17(7):1080. |
[38] |
PARDANANI A, FINKE C, LASHO T L, et al. IPSS-independent prognostic value of plasma CXCL10, IL-7 and IL-6 levels in myelodysplastic syndromes[J]. Leukemia, 2012, 26(4):693-699.
doi: 10.1038/leu.2011.251 pmid: 21912394 |
[39] |
BRUSERUD Ø, RYNINGEN A, OLSNES A M, et al. Subclassification of patients with acute myelogenous leukemia based on chemokine responsiveness and constitutive chemokine release by their leukemic cells[J]. Haematologica, 2007, 92(3):332-341.
doi: 10.3324/haematol.10148 pmid: 17339182 |
[40] | CAO H, TADROS V, HIRAMOTO B, et al. Targeting TKI-activated NFKB2-MIF/CXCLs-CXCR2 signaling pathways in FLT3 mutated acute myeloid leukemia reduced blast viability[J]. Biomedicines, 2022, 10(5):1038. |
[41] | SUI S, LI Z, TAN J, et al. Low expression of CD5 and CD6 is associated with poor overall survival for patients with T-cell malignancies[J]. J Oncol, 2022,2022:2787426. |
[42] | STRATMANN S, YONES S A, GARBULOWSKI M, et al. Transcriptomic analysis reveals proinflammatory signatures associated with acute myeloid leukemia progression[J]. Blood Adv, 2022, 6(1):152-164. |
[43] | RAMBALDI B, KIM H T, ARIHARA Y, et al. Phenotypic and functional characterization of the CD6-ALCAM T-cell co-stimulatory pathway after allogeneic cell transplantation[J]. Haematologica, 2022, 107(11):2617-2629. |
[44] |
SOIFFER R J, FAIRCLOUGH D, ROBERTSON M, et al. CD6-depleted allogeneic bone marrow transplantation for acute leukemia in first complete remission[J]. Blood, 1997, 89(8):3039-3047.
pmid: 9108425 |
[45] |
ROWLEY J, MONIE A, HUNG C F, et al. Expression of IL-15RA or an IL-15/IL-15RA fusion on CD8+ T cells modifies adoptively transferred T-cell function in cis[J]. Eur J Immunol, 2009, 39(2):491-506.
doi: 10.1002/eji.200838594 pmid: 19180469 |
[46] | ZHANG Y, ZHUANG Q, WANG F, et al. Co-expression IL-15 receptor alpha with IL-15 reduces toxicity via limi-ting IL-15 systemic exposure during CAR-T immunotherapy[J]. J Transl Med, 2022, 20(1):432. |
[47] |
REIKVAM H, HATFIELD K J, OYAN A M, et al. Primary human acute myelogenous leukemia cells release matrix metalloproteases and their inhibitors: release profile and pharmacological modulation[J]. Eur J Haematol, 2010, 84(3):239-251.
doi: 10.1111/j.1600-0609.2009.01382.x pmid: 19922462 |
[48] |
HATFIELD K J, REIKVAM H, BRUSERUD Ø. The crosstalk between the matrix metalloprotease system and the chemokine network in acute myeloid leukemia[J]. Curr Med Chem, 2010, 17(36):4448-4461.
pmid: 21062258 |
[1] | 叶向军, 卢兴国. 第5版世界卫生组织造血淋巴肿瘤MDS和AML分类更新解读[J]. 诊断学理论与实践, 2023, 22(05): 421-428. |
[2] | 马娟, 沈立松. DNA甲基化基因DNMT3A在急性髓系白血病M4和M5发病机制的研究进展[J]. 诊断学理论与实践, 2017, 16(04): 446-448. |
[3] | 朱坚轶, 郎雯竞, 陈芳源, 徐卓然, 沈莉菁, 钟济华. 三氧化二砷影响EVI1基因调控造血转录因子的体外研究[J]. 诊断学理论与实践, 2017, 16(01): 42-47. |
[4] | 陈冰, 眭竫旎. 急性髓系白血病微小残留病监测方式的展望[J]. 诊断学理论与实践, 2017, 16(01): 17-26. |
[5] | 陈秋生. 急性髓系白血病的分子诊断及其临床意义[J]. 诊断学理论与实践, 2017, 16(01): 3-6. |
[6] | 沈志祥. 我国急性髓系白血病(非M3)的诊治现状[J]. 诊断学理论与实践, 2017, 16(01): 1-2. |
[7] | 陈丽韵, 贾培敏, 童建华, 李军民,. 阿糖胞苷诱导白血病细胞株U937自噬作用的实验观察[J]. 诊断学理论与实践, 2013, 12(02): 185-188. |
[8] | 徐黎, 张倩乔, 张征, 杨瑞, 宋陆茜, 郭芳, 何懿清, 杨思, 崔练, 李晓, 常春康,. 再生障碍性贫血、骨髓增生异常综合征及急性髓系白血病患者骨髓基质细胞衍生因子-1及其受体CXCR4的表达水平和意义[J]. 诊断学理论与实践, 2010, 9(05): 498-502. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||