诊断学理论与实践 ›› 2020, Vol. 19 ›› Issue (02): 104-110.doi: 10.16150/j.1671-2870.2020.02.002
钱军
收稿日期:
2019-10-30
出版日期:
2020-04-25
发布日期:
2020-04-25
Received:
2019-10-30
Online:
2020-04-25
Published:
2020-04-25
中图分类号:
钱军. 骨髓增殖性肿瘤的分子诊断进展[J]. 诊断学理论与实践, 2020, 19(02): 104-110.
表2
CNL、aCML、CMML和MDS/MPN-U比较
指标 | CNL | aCML | CMML | MDS/MPN-U |
---|---|---|---|---|
白细胞计数 | ≥25×109/L | ≥13×109/L(由中性粒细胞 及前体细胞增多所致) | (>50%的患者可有白细胞增 多,其余正常或轻度降低) | 存在MPN的临床和 形态学特征,如血 小板计数≥450×109/L; 伴骨髓巨核细胞增生和 (或)白细胞≥13×109/L; 存在MDS一个亚型的 临床和形态学特征 (除外5q-综合征); 原始细胞<20% |
白细胞分类 | ||||
中性粒细胞 | ≥80% | 不确定 | 不确定 | |
早、中、晚幼粒细胞 | <10% | ≥10% | (通常<10%) | |
单核细胞 | <1×109/L | 计数无或轻度增多,但百分 比<10% | ≥1×109/L,且百分比≥10% | |
嗜碱性粒细胞 | 不确定 | 计数无或轻度增多,但百分 比<2% | 不确定 | |
原始细胞 | 罕见 | <20% | <20% | |
粒系发育异常 | 无 | 有,包括染色质异常聚集 | (多见,如核分叶减少或异常 分叶、胞质颗粒减少) | |
骨髓增生 | 高度增生,中性粒细胞比例 和数量增多 | 高度增生,粒系明显增生 | (>75%患者呈骨髓高度增生) | |
血细胞发育异常 | 中性粒细胞成熟正常 | 粒系,伴或不伴红系、巨核系 | ≥1个髓系 | |
原始细胞 | <5% | <20% | <20% | |
排除PDGFRA、PDGFRB、 FGFR1、PCM1-JAK2 | 需要 | 需要 | 需要 | 需要 |
排除CML、PMF、PV、ET | 需要 | 需要 | 需要 | 需要 |
染色体异常 | 23%~33%有克隆性改变, 常见+8、20q-、+21、11q-、 12p-等 | 20%~80%有克隆性异常, 常见+8、20q-、i(17q)等 | 20%~40%有克隆性异常, 常见+8、-Y、复杂异常、 -7/7q-、i(17q)等 | 30%有克隆性改变, 常见+8、-77q-、20q-、 i(17q)等 |
基因突变 | ||||
CSF3R T618I或 其他活化型突变* | 64%~100% | 22% | 3% | 罕见 |
SETBP1 | 14%~56% | 7%~48% | 6%~15% | 9% |
ASXL1 | 30%~77% | 20%~81% | 40%~69% | 未知 |
U2AF1 | 15% | 15% | 5%~24% | 14% |
TET2 | 20%~29% | 16%~37% | 48%~58% | 30% |
SRSF2 | 21%~44% | 12%~40% | 24%~46% | 15% |
EZH2 | 20% | 8%~30% | 5%~7% | 10% |
GATA2 | 13% | 15% | 14% | 未知 |
PTPN11 | 10% | 0 | 3% | 未知 |
RAS | 10% | 29%~35% | 19%~48% | 10% |
JAK2 | 8% | 4%~11% | 3%~8% | 19%~22% |
CBL | 5% | 8%~11% | 10%~17% | >10% |
ABL1 | 5% | 4% | 0 | 未知 |
DNMT3A | 5% | 7% | 2%~10% | 4% |
CUX1 | 5% | 11% | 0 | 未知 |
SMC1A | 5% | 0 | 3% | 未知 |
WT1 | 5% | 0 | 0 | 1% |
ETNK1 | 3% | 4~8% | 0 | 未知 |
RUNX1 | 3% | 6%~12% | 15%~28% | 14% |
FLT3 | 0 | 5%~7% | 0 | 未知 |
CEBPA | 0 | 0~4% | 0~20% | 4% |
ZRSR2 | 3% | 4% | 3%~8% | 未知 |
SF3B1 | 3% | 0 | 0~6% | 未知 |
IDH1/IDH2 | 3% | 0 | 0~5% | 5%~10% |
表3
PV、ET、PMF和MDS/MPN-RS-T比较
指标 | PV | ET | PMF | MDS/MPN-RS-T |
---|---|---|---|---|
血红蛋白 | 增高 | 多正常 | 降低 | 降低 |
原始细胞 | <1%(外周), <5%(骨髓) | <1%(外周), <5%(骨髓) | 早期不增加 | <1%(外周), <5%(骨髓) |
骨髓增生 | 三系增生 | 巨核系显著增生 | 早期增生,晚期减少,红系减少 | 红系增生 |
血细胞发育异常 | 无 | 红系无异常 | 巨核细胞显著异常,红系无异常 | 红系异常,有或无粒系、 巨核系异常 |
血小板计数(×109/L) | ≥450(53%) | ≥450 | 早期增加,晚期减少 | ≥450 |
环形铁粒幼细胞(RS) | 无 | 可有 | 可有 | ≥15% |
纤维化 | 10%~19% | <5% | 有 | 部分患者有 |
基因突变 | ||||
JAK2 | 96% | 52%~55% | 49%~65% | 50%~71% |
CALR | 0% | 20%~26% | 15%~25% | 0~12.5% |
MPL | 0% | 4%~10% | 3%~5% | 1%~5% |
TET2 | 10%~20% | 5%~16% | 10%~20% | 23%~25% |
ASXL1 | 5%~10% | 3%~11% | 13%~40% | 14%~15% |
DNMT3A | 5%~7% | 1%~6% | 2%~15% | 15%~17% |
SF3B1 | 罕见 | 5% | 3%~10% | 72%~93% |
U2AF1 | 罕见 | 0~2% | 3%~20% | 4.5% |
SH2B3 | 罕见 | 0~3% | 5% | 未知 |
IDH1/IDH2 | 1%~2% | 1%~2% | 1%~5% | 未知 |
CBL | 1% | 1%~2% | 5%~6% | 4% |
TP53 | 1% | 1%~2% | 1% | 未知 |
EZH2 | <5% | 3% | 5%~10% | 未知 |
SRSF2 | 罕见 | 2% | 3%~20% | 7% |
SETBP1 | 未知 | 2% | 6% | 1% |
RUNX1 | 3%~5% | 2%~5% | 5% | 未知 |
[1] | Swerdlow SH, Campo E, Harris NL. WHO classification of tumours of haematopoietic and lymphoid tissues[M].. Revised 4th ed. Lyon: International Agency for Research on Cancer, 2017. |
[2] |
Baccarani M, Castagnetti F, Gugliotta G, et al. The proportion of different BCR-ABL1 transcript types in chronic myeloid leukemia. An international overview[J]. Leukemia, 2019, 33(5):1173-1183.
doi: 10.1038/s41375-018-0341-4 pmid: 30675008 |
[3] |
Arun AK, Senthamizhselvi A, Mani S, et al. Frequency of rare BCR-ABL1 fusion transcripts in chronic myeloid leukemia patients[J]. Int J Lab Hematol, 2017, 39(3):235-242.
doi: 10.1111/ijlh.12616 pmid: 28035733 |
[4] |
Branford S, Rudzki Z, Hughes TP. A novel BCR-ABL transcript (e8a2) with the insertion of an inverted sequence of ABL intron 1b in a patient with Philadelphia-positive chronic myeloid leukaemia[J]. Br J Haematol, 2000, 109(3):635-637.
doi: 10.1046/j.1365-2141.2000.02042.x URL |
[5] |
Soderquist CR, Ewalt MD, Czuchlewski DR, et al. Myeloproliferative neoplasms with concurrent BCR-ABL1 translocation and JAK2 V617F mutation: a multi-institutional study from the bone marrow pathology group[J]. Mod Pathol, 2018, 31(5):690-704.
doi: 10.1038/modpathol.2017.182 URL |
[6] |
Martin-Cabrera P, Haferlach C, Kern W, et al. BCR-ABL1-positive and JAK2 V617F-positive clones in 23 patients with both aberrations reveal biologic and clinical importance[J]. Br J Haematol, 2017, 176(1):135-139.
doi: 10.1111/bjh.13932 URL |
[7] |
Pieri L, Spolverini A, Scappini B, et al. Concomitant occurrence of BCR-ABL and JAK2 V617F mutation[J]. Blood, 2011, 118(12):3445-3446.
doi: 10.1182/blood-2011-07-365007 pmid: 21940831 |
[8] | Bader G, Dreiling B. Concurrent JAK2-positive myeloproliferative disorder and chronic myelogenous leukemia: A novel entity? A case report with review of the literature[J]. J Investig Med High Impact Case Rep, 2019, 7:2324709619832322. |
[9] |
Elliott MA, Tefferi A. Chronic neutrophilic leukemia: 2018 update on diagnosis, molecular genetics and mana-gement[J]. Am J Hematol, 2018, 93(4):578-587.
doi: 10.1002/ajh.24983 URL |
[10] |
Szuber N, Tefferi A. Chronic neutrophilic leukemia: new science and new diagnostic criteria[J]. Blood Cancer J, 2018, 8(2):19.
doi: 10.1038/s41408-018-0049-8 URL |
[11] |
Reiter A, Gotlib J. Myeloid neoplasms with eosinophilia[J]. Blood, 2017, 129(6):704-714.
doi: 10.1182/blood-2016-10-695973 URL |
[12] |
Valent P, Klion AD, Horny HP, et al. Contemporary consensus proposal on criteria and classification of eosinophilic disorders and related syndromes[J]. J Allergy Clin Immunol, 2012, 130(3):607-612.
doi: 10.1016/j.jaci.2012.02.019 pmid: 22460074 |
[13] |
Cross NCP, Hoade Y, Tapper WJ, et al. Recurrent activating STAT5B N642H mutation in myeloid neoplasms with eosinophilia[J]. Leukemia, 2019, 33(2):415-425.
doi: 10.1038/s41375-018-0342-3 URL |
[14] |
Tefferi A, Barbui T. Polycythemia vera and essential thrombocythemia: 2019 update on diagnosis, risk-stratification and management[J]. Am J Hematol, 2019, 94(1):133-143.
doi: 10.1002/ajh.25303 pmid: 30281843 |
[15] |
Mejía-Ochoa M, Acevedo Toro PA, Cardona-Arias JA. Systematization of analytical studies of polycythemia vera, essential thrombocythemia and primary myelofibrosis, and a meta-analysis of the frequency of JAK2, CALR and MPL mutations 2000-2018[J]. BMC Cancer,2019, 19(1):590.
doi: 10.1186/s12885-019-5764-4 URL |
[16] |
Delic S, Rose D, Kern W, et al. Application of an NGS-based 28-gene panel in myeloproliferative neoplasms reveals distinct mutation patterns in essential thrombocythaemia, primary myelofibrosis and polycythaemia vera[J]. Br J Haematol, 2016, 175(3):419-426.
doi: 10.1111/bjh.14269 URL |
[17] |
Tefferi A, Lasho TL, Guglielmelli P, et al. Targeted deep sequencing in polycythemia vera and essential thrombocythemia[J]. Blood Adv, 2016, 1(1):21-30.
doi: 10.1182/bloodadvances.2016000216 pmid: 29296692 |
[18] |
Senín A, Fernández-Rodríguez C, Bellosillo B, et al. Non-driver mutations in patients with JAK2 V617F-mutated polycythemia vera or essential thrombocythemia with long-term molecular follow-up[J]. Ann Hematol, 2018, 97(3):443-451.
doi: 10.1007/s00277-017-3193-5 URL |
[19] |
Milosevic Feenstra JD, Nivarthi H, Gisslinger H, et al. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms[J]. Blood, 2016, 127(3):325-332.
doi: 10.1182/blood-2015-07-661835 pmid: 26423830 |
[20] |
Cabagnols X, Favale F, Pasquier F, et al. Presence of atypical thrombopoietin receptor(MPL) mutations in triple-negative essential thrombocythemia patients[J]. Blood, 2016, 127(3):333-342.
doi: 10.1182/blood-2015-07-661983 pmid: 26450985 |
[21] | 鞠满凯, 付荣凤, 李慧媛, 等. 三阴性血小板增多症的患者特点及靶向基因测序分析[J]. 中国实验血液学杂志, 2018, 26(4):1137-1145. |
[22] |
Yoshimitsu M, Hachiman M, Uchida Y, et al. Essential thrombocytosis attributed to JAK2-T875N germline mutation[J]. Int J Hematol, 2019, 110(5):584-590.
doi: 10.1007/s12185-019-02725-8 pmid: 31428969 |
[23] |
Tefferi A, Nicolosi M, Mudireddy M, et al. Driver mutations and prognosis in primary myelofibrosis: Mayo-careggi MPN alliance study of 1,095 patients[J]. Am J Hematol, 2018, 93(3):348-355.
doi: 10.1002/ajh.24978 pmid: 29164670 |
[24] |
Caponetti GC, Bagg A. Genetic studies in the evaluation of myeloproliferative neoplasms[J]. Semin Hematol, 2019, 56(1):7-14.
doi: S0037-1963(18)30033-7 pmid: 30573049 |
[25] |
Tefferi A, Lasho TL, Finke CM, et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons[J]. Leukemia, 2014, 28(7):1472-1477.
doi: 10.1038/leu.2014.3 pmid: 24402162 |
[26] |
Tefferi A. Primary myelofibrosis: 2019 update on diagnosis, risk-stratification and management[J]. Am J Hematol, 2018, 93(12):1551-1560.
doi: 10.1002/ajh.25230 pmid: 30039550 |
[27] |
Lin Y, Liu E, Sun Q, et al. The prevalence of JAK2, MPL, and CALR mutations in Chinese patients with BCR-ABL1-negative myeloproliferative neoplasms[J]. Am J Clin Pathol, 2015, 144(1):165-171.
doi: 10.1309/AJCPALP51XDIXDDV URL |
[28] |
Iurlo A, Gianelli U, Cattaneo D, et al. Impact of the 2016 revised WHO criteria for myeloproliferative neoplasms, unclassifiable: Comparison with the 2008 version[J]. Am J Hematol, 2017, 92(4):E48-E51.
doi: 10.1002/ajh.24657 URL |
[1] | 何亲羽, 王伟, 陈立芬, 张雪蕾, 董治亚. LHCGR基因突变致家族性男性性早熟2例报告及文献复习[J]. 诊断学理论与实践, 2022, 21(05): 598-605. |
[2] | 陈志敏, 何浩岚. 艾滋病合并马尔尼菲篮状菌病的诊治现状[J]. 诊断学理论与实践, 2022, 21(04): 425-430. |
[3] | 沈银忠. 《人类免疫缺陷病毒感染/艾滋病合并结核分枝杆菌感染诊治专家共识》解读[J]. 诊断学理论与实践, 2022, 21(04): 431-436. |
[4] | 郝旭, 王伟铭. 依靠肾活检确诊的以肾脏病变为主要表现的法布里病1例报告[J]. 诊断学理论与实践, 2022, 21(04): 527-529. |
[5] | 陈宏, 沈银忠. 人类免疫缺陷病毒感染/艾滋病合并结核病的诊治进展[J]. 诊断学理论与实践, 2022, 21(04): 530-534. |
[6] | 何新, 陈慧, 冯炜炜. 机器学习算法在辅助超声诊断附件肿块良恶性中的应用研究进展[J]. 诊断学理论与实践, 2022, 21(04): 541-546. |
[7] | 徐子真, 李擎天, 刘湘帆, 李莉, 李惠, 王也飞, 吴洁敏, 陈宁, 梁璆荔, 陈松立, 戴健敏, 宋珍, 丁磊. 实验诊断学在线课程的建立和实践[J]. 诊断学理论与实践, 2022, 21(04): 547-550. |
[8] | 赵然, 詹维伟, 侯怡卿. 计算机辅助诊断系统辅助超声诊断甲状腺弥漫性病变合并结节良恶性的应用价值[J]. 诊断学理论与实践, 2022, 21(03): 390-394. |
[9] | 郭业兵, 郑金峰. 阴道壁胃肠道外间质瘤一例报道并文献复习[J]. 诊断学理论与实践, 2022, 21(03): 405-407. |
[10] | 王刚, 陈生弟. 神经病学的诊断:起源、发展及挑战[J]. 诊断学理论与实践, 2022, 21(01): 1-4. |
[11] | 唐静仪, 余群, 刘军. 结合人工智能的结构影像分析对阿尔茨海默病的早期预测及精准诊断研究进展[J]. 诊断学理论与实践, 2022, 21(01): 12-17. |
[12] | 魏文石. 直面我国阿尔茨海默病诊治的挑战——《中国阿尔茨海默病报告2021》解读[J]. 诊断学理论与实践, 2022, 21(01): 5-7. |
[13] | 王蔚, 王小钦. 缺铁性贫血的病因诊断[J]. 诊断学理论与实践, 2021, 20(06): 529-532. |
[14] | 岳婧婧, 宋琦, 江旭峰, 王黎, 赵维莅, 严福华. 磁共振全身扩散加权成像结合T2WI抑脂序列与FDG-PET/CT在初发淋巴瘤分期及病灶检出的对比研究[J]. 诊断学理论与实践, 2021, 20(06): 540-546. |
[15] | 周璐, 雷航, 洪叶, 金爽, 董永勤, 王学锋, 蔡晓红. 一个新的ABO*A等位基因导致的AwB亚型及其分子机制研究[J]. 诊断学理论与实践, 2021, 20(06): 547-551. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||