 
  
	诊断学理论与实践 ›› 2020, Vol. 19 ›› Issue (02): 111-114.doi: 10.16150/j.1671-2870.2020.02.003
收稿日期:2019-12-01
									
				
									
				
									
				
											出版日期:2020-04-25
									
				
											发布日期:2020-04-25
									
			通讯作者:
					常春康
											E-mail:changchunkang@sjtu.edu.cn
												
Received:2019-12-01
									
				
									
				
									
				
											Online:2020-04-25
									
				
											Published:2020-04-25
									
			中图分类号:
贺琪, 常春康. JAKs通路在骨髓增殖性肿瘤发病机制中的作用及主要JAKs抑制剂的应用[J]. 诊断学理论与实践, 2020, 19(02): 111-114.
| [1] | Arber DA, Orazi A, Hasserjian R, et al.  The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia[J]. Blood,2016, 127(20):2391-2405. doi: 10.1182/blood-2016-03-643544 URL | 
| [2] | Baxter EJ, Scott LM, Campbell PJ, et al.  Acquired mutation of the tyrosine kinase JAK2 in human myeloprolife-rative disorders[J]. Lancet, 2005, 365(9464):1054-1061. doi: 10.1016/S0140-6736(05)71142-9 URL | 
| [3] | Pikman Y, Lee BH, Mercher T, et al.  MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia[J]. PLoS Med, 2006, 3(7):e270. doi: 10.1371/journal.pmed.0030270 pmid: 16834459 | 
| [4] | Nangalia J, Massie CE, Baxter EJ, et al.  Somatic CALR mutations in myeloproliferative neoplasms with nonmuta-ted JAK2[J]. N Engl J Med, 2013, 369(25):2391-2405. doi: 10.1056/NEJMoa1312542 URL | 
| [5] | Scott LM, Tong W, Levine RL, et al.  JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis[J]. N Engl J Med, 2007, 356(5):459-468. doi: 10.1056/NEJMoa065202 URL | 
| [6] | Rampal R, Al-Shahrour F, Abdel-Wahab O, et al.  Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis[J]. Blood, 2014, 123(22):e123-e133. doi: 10.1182/blood-2014-02-554634 URL | 
| [7] | Shuai K, Ziemiecki A, Wilks AF, et al.  Polypeptide signalling to the nucleus through tyrosine phosphorylation of Jak and Stat proteins[J]. Nature,1993 Dec 9; 366(6455):580-583. doi: 10.1038/366580a0 URL | 
| [8] | O'Shea JJ, Murray PJ. Cytokine signaling modules in inflammatory responses[J]. Immunity, 2008, 28(4):477-487. doi: 10.1016/j.immuni.2008.03.002 pmid: 18400190 | 
| [9] | Nishanth G, Wolleschak D, Fahldieck C, et al.  Gain of function in Jak2V617F-positive T-cells[J]. Leukemia, 2017, 31(4):1000-1003. doi: 10.1038/leu.2017.6 pmid: 28074070 | 
| [10] | Prestipino A, Emhardt AJ, Aumann K, et al. Oncogenic JAK2V617F causes PD-L1 expression, mediating immune escape in myeloproliferative neoplasms[J]. Sci Transl Med, 2018, 10(429),pii:eaam7729. | 
| [11] | Hasselbalch HC. Perspectives on chronic inflammation in essential thrombocythemia, polycythemia vera, and myelofibrosis: is chronic inflammation a trigger and driver of clonal evolution and development of accelerated atherosclerosis and second cancer?[J]. Blood, 2012, 119(14):3219-3225. doi: 10.1182/blood-2011-11-394775 pmid: 22318201 | 
| [12] | Fleischman AG, Aichberger KJ, Luty SB, et al.  TNFα facilitates clonal expansion of JAK2V617F positive cells in myeloproliferative neoplasms[J]. Blood, 2011, 118(24):6392-6398. doi: 10.1182/blood-2011-04-348144 pmid: 21860020 | 
| [13] | Boissinot M, Lippert E, Girodon F, et al.  Latent myeloproliferative disorder revealed by the JAK2-V617F mutation and endogenous megakaryocytic colonies in patients with splanchnic vein thrombosis[J]. Blood, 2006, 108(9):3223-3224. doi: 10.1182/blood-2006-05-021527 pmid: 17057021 | 
| [14] | Hobbs CM, Manning H, Bennett C, et al. JAK2V617F leads to intrinsic changes in platelet formation and reactivity in a knock-in mouse model of essential thrombocythemia[J]. Blood, 2013, 122(23):3787-3797. | 
| [15] | Leroy E, Constantinescu SN.  Rethinking JAK2 inhibition: towards novel strategies of more specific and versatile Janus kinase inhibition[J]. Leukemia, 2017, 31(5):1023-1038. doi: 10.1038/leu.2017.43 pmid: 28119526 | 
| [16] | Verstovsek S, Mesa RA, Gotlib J, et al.  A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis[J]. N Engl J Med, 2012, 366(9):799-807. doi: 10.1056/NEJMoa1110557 URL | 
| [17] | Harrison C, Kiladjian JJ, Al-Ali HK, et al.  JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis[J]. N Engl J Med, 2012, 366(9):787-798. doi: 10.1056/NEJMoa1110556 URL | 
| [18] | Vannucchi AM, Kiladjian JJ, Griesshammer M, et al.  Ruxolitinib versus standard therapy for the treatment of polycythemia vera[J]. N Engl J Med, 2015, 372(5):426-435. doi: 10.1056/NEJMoa1409002 URL | 
| [19] | Passamonti F, Saydam G, Lim L, et al. RESPONSE 2: a phase 3b study evaluating the efficacy and safety of ruxo-litinib in patients with hydroxyurea - resistant/intolerant polycytheinia vera versus best available therapy[J]. J Clin Oncol, 2014, 32:15. | 
| [20] | Harrison CN, Mead AJ, Panchal A, et al.  Ruxolitinib vs best available therapy for ET intolerant or resistant to hydroxycarbamide[J]. Blood, 2017, 130(17):1889-1897. doi: 10.1182/blood-2017-05-785790 pmid: 29074595 | 
| [21] | Harrison CN, Vannucchi AM, Platzbecker U, et al. Momelotinib versus best available therapy in patients with myelofibrosis previously treated with ruxolitinib(SIMPLIFY 2): a randomised, open-label, phase 3 trial[J]. Lancet Haematol, 2018, 5(2):e73-e81. | 
| [22] | Mesa RA, Vannucchi AM, Mead A, et al. Pacritinib versus best available therapy for the treatment of myelofibrosis irrespective of baseline cytopenias (PERSIST-1): an international, randomised, phase 3 trial[J]. Lancet Haematol, 2017, 4(5):e225-e236. | 
| [23] | Pardanani A, Harrison C, Cortes JE, et al.  Safety and efficacy of fedratinib in patients with primary or secondary myelofibrosis: A randomized clinical trial[J]. JAMA Oncol, 2015, 1(5):643-651. doi: 10.1001/jamaoncol.2015.1590 pmid: 26181658 | 
| [24] | Verstovsek S, Talpaz M, Ritchie E, et al.  A phase I, open-label, dose-escalation, multicenter study of the JAK2 inhibitor NS-018 in patients with myelofibrosis[J]. Leukemia, 2017, 31(2):393-402. doi: 10.1038/leu.2016.215 pmid: 27479177 | 
| [1] | 肖超, 陶英, 宋陆茜, 赵佑山, 吴凌云, 常春康. 88例骨髓增殖性疾病患者的临床资料分析[J]. 诊断学理论与实践, 2020, 19(02): 115-121. | 
| [2] | 杨林花,候丽虹,刘秀娥,陈俊伟,段朝霞,郭艳丽. 骨髓增殖性疾病病人血小板膜糖蛋白及其受体的研究[J]. 诊断学理论与实践, 2002, 1(01): 34-36. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||
